
Rcmd.pm – Perl Interface for R Language

for G-language Genome Analysis Environment Version 1

1. AUTHOR

 Kazuharu Arakawa, gaou@g-language.org

2. LAST UPDATE OF THIS DOCUMENT

 March 21, 2002

3. INTRODUCTION

 Rcmd.pm enables access to the powerful statistics package R from G-language GAE

Version 1. We now recommend using R/S Perl (http://www.omegahat.org/RSPerl/) in a

UNIX clone environment, but this module can be a preliminary interface. The interface

provided by this module is very simple: all you need to do is to create an instance and

pass R commands in an array. A notable feature of this interface is that all commands

given in an instance is stored, so that the commands can be passed one at a time

dynamically and not in a batch.

#R language is S-plus clone availabe with GPL at http://www.r-project.org/

4. SYNOPSIS

 use Rcmd;

 $rcmd = new Rcmd;

 @result = $rcmd->exec("<R commands>","<next R command>");

5. DESCRIPTION

 Note: We recommend using R/S Perl (http://www.omegahat.org/RSPerl/) instead

 of this module in UNIX environment. Follow instructions of the above web site.

 Rcmd enables Perl manipulation of the R language by simply executing them

 through $rcmd->exec() function. Input is an array of R commands.

 1

http://www.omegahat.org/RSPerl/

 ex:

 print $rcmd->exec(

 "x_5",

 "y_4",

 "z_x*y",

 "z"

);

 Returned values are always an array. Therefore, in case the returned value

 is only one, the value is accessible as:

 @val = $rcmd->exec("y");

 print $val[0];

 All the values are saved in each session. Thus,

 $val1 = $rcmd->exec("x_5" , "x");

 $val2 = $rcmd->exec("x");

 will output "5" for both $val1 and $val2.

 Obviously, it is also possible to use perl variables, as:

 $i = 3;

 print $rcmd->exec("y_y*$i","x");

 2

 The strength of R graphing abilities can be accessed as:

 @array = $rcmd->exec(

 "postscript(¥"/tmp/out.ps¥")",

 "x_c(1:10)",

 "y_c(3,6,3,5,8,0,1,9,2,6)",

 "plot(x,y)",

 "z_lsfit(x,y)",

 "abline(z)",

 "y"

);

 system("gs /tmp/out.ps");

 3

