CAMAMED manual

CAMAMED: a pipeline for composition-aware mapping-based analysis of
metagenomic data

The source code for this pipeline is available from https://github.com/mhnb/camamed.

Software Requirements
- Linux operating system (Preferably Ubuntu)
- Python 2 or 3 (Preferably Python >3.7)
- All required software will be installed automatically after executing the python
camamed_init.py command, otherwise, refer to Appendix A for manual installation.

Hardware Requirements

This software can run on a regular PC with 8GB RAM and a single processor. Of course, it
depends on the size of the samples and the gene catalog, but for a run with the higher
performance, it is better to run on a computer with at least 32GB of RAM and ten cores of
processor.

Initialization steps before starting
- Copy the FASTA format gene catalog files in the /CAMAMED/ folder
- If the sequence files are SRA format
» Copy SRA samples in the ~/sra_files folder.
» Copy the SRA sample names in the ~/sra_files/sra_file_names.txt file.
= for example (sra_file_names):
filel.sra
file2.sra
file3.sra
> After executing SRA-Toolkit, Fastq or Fasta files are automatically copied
to folder ~/Read_files.
- Copy Fastg or Fasta samples in the ~/Read_files folder (If the format of the input
sequences is not SRA).
- Copy the sample names in the ~/Read_files/sample_file_names.txt file and label them
in the ~/Read_files/class_label.txt file.
» for example (sample_file_names for paired-end sequences):
p_filel_1.fq
p_filel_2.fq
p_file2_1.fq
p_file2_2.fq
p_file3_1.fq
p_file3_2.fq

https://github.com/mhnb/camamed

» for example (class_label for paired-end sequences):
classl
class2
class3
> If the samples are paired-end, enter a label for two files that are typed in
sequence.
- A sample of the gene catalog is located in the following folder:
» ~[/sample_input_files/gene_catalog
- Some samples, with their names and labels, could be found in the following folder:
» ~[/sample_input_files/Read_files
- For example, KAAS and GhostKOALA outputs are in the following folder:
» ~[/sample_input_files/gene_ko_outputs

Also, the results of executing commands with default parameters on the ~/sample_input_files
folder data are in the ~/sample_output_files folder.

Order of the execution of functions for using the CAMAMED pipeline

Figure 1 shows the sequence of functions for analyzing metagenomic data using the
CAMAMED pipeline in two different ways.

Important points
Pointl: Note that if you have a storage limitation to store the files of sequences, you can copy
permitted number of files in the ~/sra_files or ~/Read_files folder and save the names of the
copied files in ~/sra_files/sra_file_names.txt or ~/Read_files/sample_file_names.txt files and
run below functions:

— .Jcamamed_pre_processing.py -sra (optional)

— .Jcamamed_quality control.py -fqc (optional)

— .Jcamamed_quality_control.py -sek

— ./camamed_metaphlan_profiling.py -mph -tl s

— ./camamed_mapping_mosaik.py —cag
Continue this step until all samples are completed.

Point2: The below functions are performed on the gene catalog, and in any case, should be
done at the beginning of the work.

.Jcamamed_pre_processing.py -gec -gc gene_catalog.fa -rff fastq -rt p
.Jcamamed_pre_processing.py -cdh (optional)

.Jcamamed_pre_processing.py -pgc

— ./camamed_mapping_mosaik.py -cag

Point3: After running Pointl on all samples and Point2, enter the sample's name in the
~/Read_files/sample_file_names.txt file as described in the 'Initialization steps before
starting’ section and run the remaining functions that are related to the whole sequences.

python camamed_init.py
(Install the necessary software)
(See Appendix A for more information)

.Jcamamed_pre_processing.py -sra (optional)
.Jcamamed_pre_processing.py -gec -gc gene_catalog.fa -rff fastq -rt p
.Jcamamed_pre_processing.py -cdh (optional)
Jcamamed_pre_processing.py -pgc
Jcamamed_quality_control.py -fqc (optional)
.Jcamamed_quality_control.py -sek
Jcamamed_quality control.py -eti
.Icamamed_metaphlan_profiling.py -mph -tl s
.Jcamamed_metaphlan_profiling.py -imp
.Jcamamed_mapping_mosaik.py -cag
.Jcamamed_mapping_mosaik.py -mrc
Icamamed_kegg_annotation.py -pgc 100 200 (optional)
Jcamamed_kegg_annotation.py -egk gk_filel.txt gk_file2.txt

yes

| use annotated data
previously extracted from
the KEGG database.

no

(This data wés extracted from the KEGG
database on 30/06/2019)

Jcamamed_kegg_annotation.py -kla
Jcamamed_data_normalization.py -nlk
Jcamamed_statistical_test.py -kwd -tsty krw

(This data is extracted online from the
KEGG database and may take a long time)

Jcamamed_kegg_annotation.py -kua -koec
Jcamamed_kegg_annotation.py -kua -ecre
Jcamamed_kegg_annotation.py -kua -reeq
Jcamamed_data_normalization.py -nuk
Jcamamed_statistical_test.py -kwu -tsty krw

Figure 1: shows the sequence of functions for analyzing metagenomic data using the CAMAMED

pipeline.

CAMAMED functions

1- python camamed_init

This function performs the initial setting and installation of related applications to run
CAMAMED. This function is executed with the system's default python that is better to have
Python version 3.7 or higher. But it runs with other versions and even python 2.7. If the
required applications are not automatically installed, Appendix A can be used for manual
installation.

For example: python camamed_init

2- camamed_pre_processing
This function is a preprocessing step in pipeline
Command: ./camamed_pre_processing.py method [options]

Methods:

-h
-sra

-gec

Shows help related to this function
Running SAR toolkit to convert SRA files to Fastq or Fasta files. (**optional**)
Copy SRA samples in the ~/sra_files folder.
Copy the sample names in the ~/sra_files/sra_file_names.txt.
For example:
filel.sra
file2.sra
file3.sra
After executing SRA-Toolkit, Fastq or Fasta files are automatically copied to folder
~/Read_files.
For Example: ./camamed_pre_processing.py -sra
Get information on sequences and gene catalogs.
Options:
-gc (gene_catalog): Gene catalog sequences must have Fasta format.
First copy the gene catalog into the /CAMAMED folder.
-rff (read_files_format)[fastg/fasta]:
Copy the sample files in the ~/Read_files folder.
Enter the file name of the samples in the ~/Read_files/sample_file_names.txt
For single end Fastq files:
filel.fastq
file2.fastq
file3.fastq
For paired end Fastq files:
filel 1.fastq
filel 2.fastq
file2_1.fastq
file2_2.fastq
-rt (read_type): paired end or single end [p/s]

-is (insert_size): For paired end sequences (An integer number) or ignor enter -1
(Default=-1).
For Example:
Jcamamed_pre_processing.py -gec -gc gene_catalog.fa -rff fastq -rt p
/camamed_pre_processing.py -gec -gc gene_catalog.fa -rff fastq -rt p -is 350
-cdh Running CD-HIT on the gene catalog to remove redundant genes. (**optional**)
You can use this option if you think your gene catalog has redundant sequences.
After deleting redundant genes, the new gene catalog is saved with the name
cd_hit_gene_catalog. Also, clustered genes are saved in a file named
cd_hit_gene_catalog.clstr, and the genes of the head cluster are marked with
asterisk (*).
Options:
-sit (sequence_identity_threshold): This value can be in the range of 0.8 to 1
(Default=0.9).
For Example: ./camamed_pre_processing.py -cdh
Jcamamed_pre_processing.py -cdh -sit 0.95
-pgc Peprocessing gene catalog.
At this point, the names of the genes are deleted from the gene catalog and stored in
the ~/files/gene_name.txt and for the genes the genel, gene2 and ... are respectively
selected.
For Example: ./camamed_pre_processing.py —pgc

3- camamed_quality_control
This function executes Fastqc quality control and SeqgKit tools on sample sequences.
At this state, if the sequences have Fastq format, they will be quality controlled and their
statistical information extracted. But if they have Fasta format, only their statistical
information obtained. Before running this step, the sample data should be in the ~/Read_files
folder and the file names should be written in the text file
~/Read_files/sample_file_names.txt, respectively.
Command: ./camamed_quality_control.py method
Methods:
-h Shows help related to this function.
-fgc Execut FastQC quality control only for Fastq files (**optional**).
This method is used to control the quality of Fastq sequences. In this step, FastQC
software executes on sequences and the outputs saved as HTML files in the
~[fastqc_output/ folder.
For Example: ./camamed_quality_control.py -fqc
-sek Execut SegK:it to extract information from sample files.
At this point, SegKit software is run to extract the statistical information of the
samples, and results are saved in ~/segkit_output folder.
For Example: ./camamed_quality_control.py -sek
-eti Extract total information from SegKit outputs.

In this step, all the statistical information related to the Seqgkit outputs is extracted
and saved in the ~/all_results/total_sample_info.txt file.
For Example: ./camamed_quality_control.py —eti

4- camamed_metaphlan_profiling
In this function, using the Metaphlan2 software extract the abundance of all bacteria.
Metaphlan2 can produce taxonomic profiling at different levels. Such as Kingdom, Phylum,
Class, Order, Family, Genus, and Species.
Command: ./camamed_metaphlan_profiling.py method [options]
Methods:
-h Shows help related to this function.
-mph Execute metaphlan2.
By choosing this option, the MetaPhlan2 software runs on samples, and the results
are stored in the ~/metaphlan_output folder. You can use the 'metaphlan2' command
to access MetaPhlan2 help. Meanwhile, MetaPhlan2 only returns the results of
prokaryotic genomes and ignores the genomic information of eukaryotes, viruses,
and archaea. For more configurations, refer to the ~/metaphlan_samlpe.sh file.
Options:
-tl (taxa_level): For selecting Kingdom, Phylum, Class, Order, Family, Genus, or
Species, Select one of {'k', 'p’, 'c’, '0’, 'f', 'g’, 's'}
-Cc (core_number): select number of cores for Metaphlan2 execution (Default=1).
The number of cores must be a positive integer, otherwise one is chosen.
For Example: ./camamed_metaphlan_profiling.py -mph -tl s -c 3
-imp Extract information from metaphlan2 output files.
At this step, information about the bacteria is selected at the taxonomic level, and
their frequency is calculated (Frequency is reported as percentages) and stored in
the ~/all_results/total_metaphlan_results.txt file. If the sequences are paired-end,
instead of the two files per one sample, only one output is reported as an average.
For Example: ./camamed_metaphlan_profiling.py —imp

5- camamed_mapping_mosaik
This function maps the reads to the genes catalog using the MOSAIK software. To mapping
the read sequences to the gene catalog, the following two steps should be implemented. In the
first step, the gene catalog should be converted into an acceptable form for the MOSAIK
software. In the second step, the reads are mapped to the gene catalog.
Command: ./camamed_mapping_mosaik.py method [options]
Methods:
-h Shows help related to this function
-cag Creating an acceptable form of gene catalog.
At this stage, two MosaikBuild and MosaikJump tools are run on the gene catalog to
prepare it for sequence mapping. To access the help of these tools, you can run
"/MosaikBuild -h', and './MosaikJump -h' commands in the Linux terminal at

ICAMAMED/ path, and you can refer to the ~/mosaik_build_ref.sh file for further
configuration.
Options:
-hw (hash word): Select the length of the hash word that can be in range 4 to 32
(Default=15).
For Example: ./camamed_mapping_mosaik.py -cag

/camamed_mapping_mosaik.py -cag -hw 17

-mrc Mapping reads to the gene catalog using MOSAIK software.
At this state, the MosaikBuild tool is used for preparing the sequences and the
MosaikAligner tool is used to map the sequences to the gene catalog prepared in the
previous step. To access the help of these tools, the '/MosaikBuild -h' and
"./MosaikAligner -h' commands are executed at /CAMAMED/ path. Refer to the
~/mosaik_read_aligner.sh file for more configurations. The mapping results are
stored in a SAM format in the ~/mosaik_outputs folder.
Options:
-C (core_number): Select number of cores for MOSAIK execution (Default=1).
The number of cores must be a positive integer.

For Example: ./camamed_mapping_mosaik.py -mrc

Jcamamed_mapping_mosaik.py -mrc -c 5

6- camamed_kegg_annotation

This function extracts annotated information from KEGG databases.

Command: ./camamed_kegg_annotation.py method [options]

Methods:

-h Shows help related to this function
-pgc Preparing the Gene Catalog for extracting annotated information from the KEGG

databases. To obtain KOs associated with gene sequences using web services
GhostKOALA and KAAS, it would be better if the file size of the gene catalog is
less than 300 MB. The gene catalog is stored after the preprocessing and deletion of
the duplicated genes (optional) named main_gene_catalog.fa in the /CAMAMED/
folder. If the gene catalog size is more than 300MB, you can use this option to
convert it to smaller files. For example, if the gene catalog has 300 gene
sequences, you can convert it to three files with 100 genes by entering the values
100 200. This will split the gene catalog into three files, each with 100 genes. If the
file size does not get smaller than 300MB, this step should be re-run. Finally, the
smaller files are located in the ~/sub_catalog_files folder and are ready to be
uploaded to the web service.
After the conversion of the gene catalog into the files smaller than 300MB, for
nucleotide sequences, both the KAAS and the GhostKOALA web services can be
used to obtain KOs associated with each gene sequence. However, for amino acids,
only GhostKOALA can be used to get KOs.
- Link to the KAAS web service for uploading sequences

» https://www.genome.jp/kaas-bin/kaas_main
- Link to the GhostKOALA web service for uploading sequences
» https://www.kegg.jp/ghostkoala/
For Example: ./camamed_kegg_annotation.py -pgc 100 200
-egk Extracting information from GhostKOALA or KAAS output files.
In this step, the files generated by GhostKOALA or KAAS server are read and the
required information is extracted. Two examples of the KASS and the
GhostKOALA web services output are in the ~/sample_input_files/gene_ko_outputs
folder. If the gene catalog is more than one file, the results should also be saved in a
few text files, and the order in which they will be uploaded to the CAMAMED will
be the same as the order of gene number. To continue running, Web services output
files must be copied to the ~/kegg_annotation folder. At this point, the names of the
files should be entered, for example, ' gk_filel.txt gk file2.txt". The ordering of the
files is based on the gene number.
After running this function, two ko.txt and gene_ko.txt files are created in the
~/kegg_annotation folder, in which the entire KOs in the samples and the
relationship between the genes and the KOs are determined, respectively.
For Example: ./camamed_kegg_annotation.py -egk gk_filel.txt gk_file2.txt
-kla KEGG local annotation
We extracted all the annotated information related to the KOs and EC numbers and
reactions to the date 2019/6/30 from the KEGG database and saved in the
/kegg_annotation/ folder in the text files that start with the 'def' prefix.
— EC numbers related to KOs and all EC numbers in the KEGG database are
stored in def_ko_ec.txt and def_ec.txt files, respectively.
— Reactions related to EC numbers and all reaction numbers in the KEGG
database are stored in def_ec_re.txt and def_re.txt files, respectively.
— Finally, the reaction definitions and the equation for each reaction are stored
in the def_re_eq.txt file
After this step, two other files are created. The EC numbers associated with each
gene and the reactions associated with each gene are stored in gene_ec.txt and
gene_re.txt files, respectively.
For Example: ./camamed_kegg_annotation.py -kla
-kua KEGG user annotation
If you do not want to use the previously extracted data from the KEGG database,
you can use this method. There are three options at this stage to be executed in
sequence. But if you want to extract this information yourself, you can use these
options.
****These steps may take a long time****
Options:
-koec Extract KO-related EC numbers from the KEGG database. At this step, all EC
numbers associated with the ko.txt file are extracted online from the KEGG database

and stored in separate files called ec.txt and ko_ec.txt. Also, the relationship between

genes and EC numbers is stored in the gene_ec.txt file.

-ecre Extract EC-related reactions from the KEGG database. At this step, all

reactions associated with the ec.txt file are extracted online from the KEGG database

and stored in separate files called re.txt and ec_re.txt. Also, the relationship between

genes and reactions is stored in the gene_re.txt file.

-reeq Extract reaction-related equation from the KEGG database. At this state, the

definitions and equations for the reaction of the re.txt file are extracted online from

the KEGG database and stored in the re_eq.txt file.

For Example: ./camamed_kegg_annotation.py -kua -koec
Jcamamed_kegg_annotation.py -kua -ecre

Jcamamed_kegg_annotation.py -kua -reeq

7- camamed_data_normalization
This function Extract samples information in normalized bacteria, gene, KO, EC number and
reaction matrix.
Command: ./camamed_data_normalization.py method [options]
Methods:
-h Shows help related to this function
-nlk Normalizing data using local information previously extracted from the KEGG
database. At this stage, the abundance of bacteria and genes, as well as KOs, EC
numbers and reactions that are related to the identified genes in the previous
sections, are normalized based on the CSS algorithm presented in the main paper and
stored in the ~/all results folder. The names of these files are
normal_matrix_metaphlan.txt, normal_matrix_gene.txt, normal_matrix_Ko.txt,
normal_matrix_ec.txt and normal_matrix_re.txt respectively.
Options:
-mtct Minimum total counts for each taxon. This value is the percentage of all taxa,
for example, 0.5 (Default=0.001).
-mtcg Minimum total counts of mapped reads per gene in total samples (Default=5).
For Example: ./camamed_data_normalization.py -nlk
Jcamamed_data_normalization.py -nlk -mtct 0.002 -mtcg 10
-nuk Normalizing data using information extracted by the user from the KEGG database.
This step is exactly like -nlk’ method, the normalized data is generated based on the
online information extracted by the user and saved with the same name in the
~/all_results folder.
Option:
-mtct Minimum total counts for each taxon. This value is the percentage of all taxa,
for example, 0.5 (Default=0.001).
-mtcg Minimum total counts of mapped reads per gene in total samples (Default=5).
For Example: ./camamed_data_normalization.py -nuk
Jcamamed_data_normalization.py -nuk -mtct 0.002 -mtcg 10

8- camamed_statistical_test
This function performs the statistical test (Kruskal-Wallis H-test or ANOVA test) on
normalized data. If the distribution of data is normal, the ANOVA test can be used,
otherwise, the Kruskal-Wallis H-test can be used. At this stage, we perform the statistical test
on normalized bacteria, gene, KO, EC number, and Reaction data that stored in the
~/all_results folder. To get started, you first select the label of class for each sample in the
~/Read_files/class_label.txt file. The number of classes can be in the range [2:10]. For each
sample, enter a separate row. For example:
classl
class2
classl
class3
Command: ./camamed_kruskal_wallis_test.py method [options]
Methods:
-h Shows help related to this function
-kwd Running the statistical test on the default annotated data.

Option:

-tsty Statistical type (Kruskal-Wallis H-test or ANOVA test)[krw/ano]

-pval The p-value to filter the output. This value can be in the interval [0:1]

(Default=0.05).

For Example: ./camamed_statistical_test.py -kwd -tsty krw
Jcamamed_statistical_test.py -kwd -tsty ano
Jcamamed_statistical_test.py -kwd -tsty krw -pval 0.01
Jcamamed_statistical_test.py -kwd -tsty ano -pval 0.01

-kwu Running the statistical test on the user extracted data.

Option:

-tsty Statistical type (Kruskal-Wallis H-test or ANOVA test)[krw/ano]

-pval The p-value to filter the output. This value can be in the interval [0:1]

(Default=0.05)

For Example: ./camamed_statistical_test.py -kwu -tsty krw
Jcamamed_statistical_test.py -kwu -tsty ano
Jcamamed_statistical_test.py -kwu -tsty krw -pval 0.01
Jcamamed_statistical_test.py -kwu -tsty ano -pval 0.01

Appendix A

Manual installation in python 3

MetaPhlAn2

>
>

Installation command (‘sudo apt install metaphlan2’)

After the first run, MetaPhlAn database files are downloaded automatically.
Otherwise, download the files from the following links and copy them to the
installation path in folder /usr/share/metaphlan2/databases.
https://bitbucket.org/biobakery/metaphlan2/downloads/mpa_v20_m200.tar
https://bitbucket.org/biobakery/metaphlan2/downloads/mpa_v20_m200.md5

CD-HIT
» Installation command (‘'sudo apt-get install cd-hit")
SRA-Toolkit
> Installation command (‘'sudo apt install sra-toolkit')
Samtools
> Installation command (‘'sudo apt-get install samtools’)
FastQC
» Installation command (‘'sudo apt install fastgc')
Also install the necessary packages for Python if requested. For example:

>
>
>
>
>

sudo apt install python3-pip
sudo pip3 install pandas
sudo pip3 install numpy
sudo pip3 install scipy
sudo pip3 install biopython

If you also use Python 2, use the following commands to install the above packages.

>

YV V V V

sudo apt install python-pip
sudo pip install pandas
sudo pip install numpy
sudo pip install scipy
sudo pip install biopython

