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Supplementary methods 
 
SM-1. Complete-likelihood score: definition and “indel-substitution factorization” 
This section provides one of the key results in this study, that is, the formal proof that the 
complete-likelihood score can be calculated as the summation of the indel component and the 
substitution component, under genuine stochastic evolutionary models. Briefly, the proof 
proceeds as follows: (I) Express the occurrence probability of a given MSA as the summation 
of probabilities over all possible evolutionary processes that can result in the MSA; (II) divide 
the set of all evolutionary processes into subsets, each of which consists of processes sharing 
the same indel process; (III) show that the total probability of each subset over all consistent 
substitution processes is independent of the shared indel process, as long as it is evolutionarily 
consistent with the MSA; (IV) by factoring out the indel-independent total probability over 
substitution processes, express the probability of the MSA as the product of the total 
probability over substitution processes (under a fixed indel process) and the total probability 
over indel processes; and (V) take the logarithm of the total probability. In the following, we 
give details on the proof. As you will see shortly, part (III) is the main part of the proof, and it 
is rather long. So, it was divided into 10 paragraphs, (III-1) through (III-10). [NOTE: In this 
section, as in our recent study [73], s ≡ (s, ω)  denotes an “extended” sequence state, which 

consists of a “basic” state ( s ) that changes only through insertions/deletions (indels), and the 
residue configuration ( ω ) that fills in the basic state. (See below for more details.)] 

(Preparation 1) Consider a given MSA, α s1,
s2, ...,

sk[ ] , of k  (DNA or protein) 
sequences, s1,

s2, ...,
sk . (Let α  be the abbreviation of α s1,

s2, ...,
sk[ ] .) Consider also that 

the phylogenetic tree, T = {n} T , {b} T( ) , of the aligned sequences is also given. (Here n  

and b  represent a node and a branch (an edge), respectively. And nR  denotes the root node 
hereafter.) Then, consider a given genuine stochastic evolutionary model, Θ = (ΘS,ΘID ) . 
Here ΘS  and ΘID  denote an evolutionary model of substitutions and that of indels, 

respectively, equipped with specific parameters. The occurrence probability, P α Θ, T"# $% , of 

MSA α  conditioned on this model setting, Θ , (and the tree, T ,) is interpreted as the 
“complete-likelihood,” L Θ, T( ) α , that is, the likelihood of the given “complete” 

evolutionary model, Θ  (, and the given tree, T ), given the MSA, α : 

                       L Θ, T( ) α ≡ P α Θ, T#$ %& .           --- Eq.(1) 

In this paper, we deal with a general continuous-time Markov model as the specific genuine 
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stochastic evolutionary model, Θ . 
 (Preparation 2) Previously (in Appendix A3 of [73]), we proved that, if some 
conditions are satisfied, the above “complete-likelihood” is factorable into the product of the 
“basic” component and the “residue” component. Here the “basic” component is the total 
probability of the possible indel processes, and the “residue” component is the total 
probability of the possible substitution processes (including the initial residue states). Thus, 
we will call this factorization the “indel-substitution factorization.” The proof given there was 
considerably long, because of two major reasons. (1) It started with a quite general model and 
gradually narrowed down its scope, in order to find the conditions for the factorization. And 
(2) it was described in terms of detailed expressions on the general continuous-time Markov 
model, including the exponential of the time-integration of its rate operator. Here, we will 
give a substantially shorter proof of the indel-substitution factorization, by (1’) imposing 
some simplifying conditions from the beginning, and by (2’) minimizing the use of 
expressions on the general continuous-time Markov model. Throughout this section, however, 
we will tacitly assume that we are working with a general continuous-time Markov model 
(satisfying some conditions). In the model, a sequence state, s , is represented as s = (s, ω) . 

Here s  is the basic state, which is an array of sites in the sequence. (Each site may be 
assigned an ancestry and possibly other attributes.) And ω = (ω1,ω2,...,ωL(s) )∈ΩL(s) is a 
vector of residues that fill in the sites of the sequence. Here L(s)  is the number of sites in s  

and Ω  is the set of residue types. (See Appendix A1 of [73].) As in [37,60,61,73], a 
“history” is an untimed record of a series of fixed mutation events. Here, however, we mainly 
consider evolutionary processes, each of which is a timed record of the series of fixed 
mutation events. When we refer to a “summation” over processes, we tacitly assume that it 
includes the multiple-time integration over the timings of the events as well. (For brevity, an 
evolutionary process is represented by adding a dot over the symbol of its evolutionary 
history counterpart. Similarly, a set of evolutionary processes is represented by adding a dot 
over the symbol of the corresponding set of evolutionary histories.)  

(I) Generalizing the proof given in sections 3.1 & 3.2 of [37], we can show that the 
complete-likelihood can be calculated by summing the occurrence probabilities (more 
precisely, probability densities) of all evolutionary processes that potentially give rise to the 
MSA, α : 

            L Θ, T( ) α = P
ψ Θ, T!

"
#
$ψ∈ Ψ α;T[ ]

∑ .               --- Eq.(2) 

Here, Ψ 
α;T[ ]  is the set of all evolutionary processes (including the root sequence state 
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s R = (sR, ω R ) ) along tree T  that can result in MSA α . And each evolutionary process, 

denoted as 
ψ  here, is made up of four components: 

ψ = sR, ω R, ψID, ψS( ) . Here, sR  is the 

basic state of the root sequence, ω R  is its residue state, ψID  is an indel process, and ψS  is 

a substitution process. These four components are not completely independent of each other. 
First, because of the causality, ψID  and ψS  depend on s R , but not vice versa. Second, the 

substitution process depends on the indel process, because an indel process determines the 
presence/absence of the sites at which substitution events take place. Explicitly taking account 
of these dependences, the above evolutionary process could be represented as: 

ψ = sR, ω R (sR ), ψID (s
R ), ψS (s

R, ω R, ψID )( ) . We also notice that the above set, Ψ 
α;T[ ] , can 

be expressed as: 

   Ψ 
α;T[ ] =

ψ = sR, ω R, ψID, ψS( )

sR ∈ S α; nR;T#$ %&,

ω R ∈ΩL(sR ),

ψID ∈ 
Η ID α; sR;T#$ %&,

ψS ∈ 
ΗS α; ψID;

s R = (sR, ω R );T#$ %&

)

*

+
+

,

+
+

-

.

+
+

/

+
+

.  --- Eq.(3) 

Here, α  (=α s1, s2, ..., sk[ ] ) is the “skeleton,” i.e., the “basic” component, of MSA 


α =α s1,

s2, ...,
sk[ ] . S α; nR;T!" #$ is the set of all “basic” sequence states at the root (nR ) that 

are consistent with the tree (T ) and α . Η ID α; sR;T"# $% is the set of all indel processes along 

T  that start with sR  at the root and that can give rise to α . And 

ΗS α; ψID;
s R = (sR, ω R );T"# $%  is the set of all substitution processes along T  that start with 

s R = (sR, ω R )  at the root, that are consistent with ψID , and that can “flesh out” α  to give 
rise to α . 
 (II) To go further, we first formally decompose Eq.(3) as follows: 

   Ψ 
α;T[ ] = (

ψID,
ψS )

ψS = (

ω R, ψS )∈ 

ΨS

α;
ψID;T!

"
#
${ }ψID=(s

R , ψID )
∈ Ψ ID α;T[ ]

 .   --- Eq.(4a) 

Here,  

   Ψ ID α;T[ ] ≡
ψID = (s

R, ψID ) sR ∈ S α; nR;T$% &', ψID ∈ 
Η ID α; sR;T$% &'{ }    --- Eq.(4b) 

is the set of all pairs, each of a “basic” state at the root and an indel process along T , that can 
give rise to α . And  
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   ΨS

α;
ψID;T"

#
$
% ≡

ψS = (

ω R, ψS )


ω R ∈ΩL(sR ),

ψS ∈ 
ΗS α; ψID;

s R = (sR, ω R );T"# $%

*
+
,

-,

.
/
,

0,
 --- Eq.(4c) 

is the set of all pairs, this time each of a “residue” state at the root and a substitution process 

along T , that are compatible with 
ψID  and that can give rise to α  by filling out α  with 

the extant residues. Second, let us recall a basic identity in the probability theory: 

    P A, B C!" #$≡
P A, B, C[ ]
P C[ ]

=
P B, C[ ] × P A B, C!" #$

P C[ ]
= P B C!" #$× P A B, C!" #$ .  --- Eq.(5) 

By using this, we decompose the summand on the right hand side of Eq.(2) as follows: 

     P ψ = (
ψID,
ψS ) Θ, T!

"
#
$ = P

ψID Θ, T!
"

#
$× P

ψS
ψID,Θ, T

!
"#

$
%& .    --- Eq.(6) 

Now, substituting Eq.(4a) and Eq.(6) into Eq.(2), we get: 

L Θ, T( ) α = P
ψID Θ, T"

#
$
%× P

ψS
ψID,Θ, T

"
#'

$
%(ψS∈ 

ΨS

α;
ψID ;T"

#
$
%

∑
,
-
.

/.

0
1
.

2.
ψID∈ 

Ψ ID α;T[ ]

∑ .   --- Eq.(7) 

 
This is the general equation that holds true regardless of details of the evolutionary model 
(Θ = (ΘS,ΘID ) ), and it provides the sound starting point of the following argument. 
 (III-1) To make Eq.(7) easier to handle, we need some assumptions. (See section 1 
of [73].) First, we assume the following condition. 
Condition (i): “The indel rates are independent of the residue state and the substitution 
process before each indel event.” 
Under this condition, the probability (density) of an indel process becomes independent of the 
substitution model setting, that is: 

       P
ψID Θ = (ΘS,ΘID ), T"

#
$
%= P

ψID ΘID, T"
#

$
% .                      --- Eq.(8) 

Next, we assume the following two conditions. 
Condition (ii): “The substitution rates at each site are independent of the states (both “basic” 
and residue) and the evolutionary processes (both indel and substitution) at other sites.” 
Condition (iii): “The probability of the residue state of an inserted subsequence, conditioned 
on the insertion, can be factorized into the product of residue probabilities over the inserted 
sites. And the probabilities are independent of sequence states before insertion.” 
In an equation, the condition (iii) could be expressed as: 

        pI δ

!ω = ( !ωx+1,..., !ωx+l ); x, l; s, tI( ) = pI !ωx+i;υx+i ( !s ), tI( )

i=1

l
∏ .   --- Eq.(9) 
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Here pI δ

!ω = ( !ωx+1,..., !ωx+l ); x, l; s, tI( )  denotes the probability, conditioned on the insertion 

of l  sites between the x  th and the x +1  th sites of s  at time tI , that the inserted 
residue state is δ !ω = ( !ωx+1,..., !ωx+l ) . And pI !ωx+i;υx+i ( !s ), tI( )  denotes the probability, 
conditioned on the insertion of the site with ancestry υx+i ( !s )  (, which is the x + i  th site of 
the new sequence !s ,) at tI , that the inserted residue is !ωx+i . Under the conditions (ii) and 

(iii), we can perform the following factorization: 

 P
ψS
ψID,Θ, T

"
#$

%
&'ψS∈ 

ΨS

α;
ψID ;T"

#
%
&

∑ = P
ψS[υ]

ψID[υ], υ,Θ, T
"
#$

%
&'ψS [υ ]∈ 

ΨS

α[υ ];

ψID [υ ];T"
#

%
&

∑
+
,
-

.-

/
0
-

1-υ ∈ ϒ

α;T[ ]
∏ .  

--- Eq.(10)     

Here, ϒ α, T[ ]  is the set of ancestries (across T ) assigned to the columns of α . ψS[υ]  is 

a substitution process (including the initial residue state) at the site with ancestry υ , and 
ψID[υ]  is the component of 

ψID  involving the site with υ . α[υ]  is the MSA column that 

corresponds to the site with υ . And ΨS

α[υ];

ψID[υ];T"
#

$
%  is the set of all substitution 

processes (including the initial residue states) along T  that are compatible with 
ψID[υ]  and 

that can give rise to α[υ]  by filling out the “skeleton” (α[υ] ) with the extant residues. 

(Eq.(10) could be derived similarly to the factorization for indel processes described in 
section 4 of [37].) 
 (III-2) Now, consider the site-wise probability on the right hand side of Eq.(10), i.e., 

   P α[υ] ψID[υ], υ,Θ, T
"
#$

%
&' ≡ P

ψS[υ]
ψID[υ], υ,Θ, T

"
#$

%
&'ψS [υ ]∈ 

ΨS

α[υ ];

ψID [υ ];T"
#

%
&

∑ .  --- Eq.(11) 

The conditions (ii) and (iii) guarantee that, under a fixed indel process component involving 
each site, the substitution processes at the site can be described by a continuous-time Markov 
model. Thus, the probability could be calculated similarly to the column-wise probability 
under a standard continuous-time Markov model of substitutions (e.g., [1,2,62]). Here, we 
generalize the argument to non-equilibrium situations and time-dependent models. [NOTE: If 
we consider that the inserted residue probabilities belong to the substitution model (ΘS ), the 

probability of a substitution process (
ψS[υ] ) could depend on the indel model (ΘID ) only 

through the indel process 
ψID[υ] . Hence we could replace Θ  in Eq.(11) with ΘS .] 

 (III-3) Eq.(11) could be expressed differently depending on whether the site existed 

at the root (nR ) or not. (For details, see Appendix A3 of [73].) If the site existed at the root, 
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we have: 

P α[υ]
ψID[υ], υ,ΘS, T

"
#$

%
&'

= P (ω R, nR ) υ,ΘS
"# %&

ωR ∈Ω

∑ × P (ωD (b), nD (b)) (ω A (b), nA (b))"
#

%
&

ωD (b)∈Ω

∑
,
-
.

/.

0
1
.

2.b∈ΒP
IN [
ψID [υ ], T ]
∏

× P (ωD ( 5b ), tD ( 5b )) (ω
A ( 5b ), nA ( 5b ))"

#
%
&

ωD ( 5b )∈Ω

∑
,
-
.

/.

0
1
.

2.5b ∈ΒD [
ψID [υ ], T ]
∏

× P (ωD ( 55b ), nD ( 55b )) (ω A ( 55b ), nA ( 55b ))"
#

%
&

55b ∈ΒP
X [
ψID [υ ], T ]
∏ .

   

--- Eq.(12a)    
Here and in Eq.(12b) below, we should consider that the summation over residue states at 
each node actually involves all the probabilities whose conditions or outcomes concern the 
states at the node. (We used this notation because there was no neater way to precisely 

represent the multiple summations here.) In Eq.(12a), ΒP
IN ψID[υ], T"
#

$
%  is the set of branches 

in the tree (T ) along which the site (with ancestry υ ) persists under the indel process 

ψID[υ]  and whose lower-ends are internal nodes. ΒP
X ψID[υ], T"
#

$
%  is the set of site-persisting 

branches whose lower-ends are external nodes (with extant sequences). And ΒD
ψID[υ], T"

#
$
%  

is the set of branches along which the site is deleted. P (ω R, nR ) υ,ΘS
"# $%  is the probability 

that the residue state is ω R  at nR , given ΘS  and υ . P (ωD (b), nD (b)) (ω A (b), nA (b))!
"

#
$  

is the probability that the residue is ωD (b)  at the lower-end (i.e., descendant node) nD (b)  
of branch b , given that the residue is ω A (b)  at the upper-end (i.e., ancestral node) nA (b)  

of the branch. Similarly, P (ωD ( !b ), tD ( !b )) (ω
A ( !b ), nA ( !b ))"

#
$
%  is the probability that the 

residue is ωD ( !b )  at time tD ( !b )  when the site is deleted along branch !b , again given that 

the residue is ω A ( !b )  at nA ( !b ) . We symbolically omitted but tacitly assumed the 
dependence of these conditional probabilities on ΘS  and υ . It should also be kept in mind 

that each node has a single residue state under each substitution process, as long as the subject 
site existed at the node.  

(III-4) If the site did not exist at the root but instead was inserted at time tI (bI )  
along branch bI , we have (see Eq.(A3.12c) of [73]): 
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P α[υ]
ψID[υ], υ,ΘS, T

"
#$

%
&'

= pI ω I ;υ, tI (bI )( )× P (ωD (bI ), n
D (bI )) (ω I , tI (bI ))"# %&

ωD (bI )∈Ω

∑
ωI ∈Ω

∑

× P (ωD (b), nD (b)) (ω A (b), nA (b))"
#

%
&

ωD (b)∈Ω

∑
,
-
.

/.

0
1
.

2.b∈ΒP
IN [
ψID [υ ], T ]
∏

× P (ωD, tD ( 5b )) (ω
A ( 5b ), nA ( 5b ))"

#
%
&

ωD ∈Ω

∑
,
-
.

/.

0
1
.

2.5b ∈ΒD [
ψID [υ ], T ]
∏

× P (ωD ( 55b ), nD ( 55b )) (ω A ( 55b ), nA ( 55b ))"
#

%
&

55b ∈ΒP
X [
ψID [υ ], T ]
∏ .

 

--- Eq.(12b)    
Here, as in Eq.(9), pI ω I ;υ, tI (bI )( )  is the probability that the site (with ancestry υ ) has  

residue ω I  when inserted, given that it was inserted at tI (bI )  along bI . And 

P (ωD (bI ), n
D (bI )) (ω I , tI (bI ))!" #$  is the probability that the residue is ωD (bI )  at the 

lower-end nD (bI )  of bI , given that the residue was ω I  when the site was inserted along 
bI . Again, we tacitly assumed the dependence of the conditional probabilities on ΘS  and 

υ . 
 (III-5) Now, we will show that, under some additional conditions, Eqs(12a,b) are 

identical, and independent of the details on the indel processes (
ψID[υ] ’s), as long as the 

processes are consistent with a given MSA column, α[υ]  (or, more precisely, a given 
“skeleton,” α[υ] ). For this purpose, we recall the “phylogenetic correctness” condition (e.g., 

[34,74]), which has to be satisfied by any indel processes (or their resulting ancestral “basic” 
states) that could result in a given MSA column. In the present context, the “phylogenetic 
correctness” condition could be rephrased as follows. 
“When a site exists at two points on the tree (T ), it must also exist all along the path on T  
that connects these points.” 
Given α[υ] , the simplest indel history satisfying this condition could be found via the Dollo 

parsimony principle [84], which searches for the history with the fewest indels while 
restricting the number of insertions to at most one but allowing an unlimited number of 
deletions. Given α[υ] , we can easily reconstruct the Dollo parsimonious history (denoted as 

ψID
0 α[υ][ ]  hereafter) by making the site exist along all paths connecting the external nodes 

holding the site, and by making the site absent from all remaining parts of the tree. The other 
indel histories (and processes) that satisfy the “phylogenetic correctness” condition could be 
constructed by continuously extending one or more paths of “site existence” from the point(s) 
on the “web” of paths of 


ψID
0 α[υ][ ] , while keeping the site existence/absence at the external 
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nodes intact.  
 (III-6) Thus, all we have to prove is that we can retract such extended paths back to 
the Dollo parsimonious history while retaining the site-wise probability (Eq.(12a) or 
Eq.(12b)) unchanged. Broadly speaking, there are two types of extended paths: one upward, 

extending toward the root (nR ); and the other downward, extending toward (but short of) 
external nodes where the site is absent. We first retract the downward paths, and then we 
retract the upward one. 
 (III-7) Each downward extension ends either at a point along a branch (like tD ( !b ) ) 

or at an internal node (like nD (b) ). In any case, the end of each downward extension is 
associated with a summation of the single conditional probabilities, like: 

P ( !ω , τ ) (ω A (b), nA (b))"
#

$
%

!ω ∈Ω

∑ , where τ = tD (b)  or τ = nD (b) . By the definition of the 

conditional probabilities, this summation is always 1  (unity). Therefore, we can indeed 
retract each downward extension until it becomes a point (node). The indel process resulting 
from all such retractions is the Dollo parsimonious process, maybe bearing an upward 
extension. 
 (III-8) The upward extension also ends either at a point along a branch (like tI (bI ) ) 

or at an ancestral node (like nA (b) , especially nR ). We need to separately consider the cases 
where the site was already present at the root (Eq.(12a)) and those where the site was inserted 
(Eq.(12b)). In the latter case, the extension could be retracted without any effect on the 
probability if the following condition is satisfied: 
Condition (iv): “For the inserted residue probabilities at the site with ancestry υ , 

pI ω;υ, τ( ){ }
ω∈Ω, τ∈T

, we have: 

          pI !ω ;υ, !τ( )×P (ω, τ ) ( !ω , !τ )#$ %&{ }
!ω ∈Ω

∑ = pI ω;υ, τ( ) ,       --- Eq.(13) 

for all upward paths on T (, whose upper-end and lower-end are denoted as !τ  and τ , 
respectively).” 
This is because the summation over residues at an internal node ( !n ) on an un-branched path 
([ !τ , τ ] ) could be trivially performed as:  

      P ( !ω , !n ) (ω1, !τ )"# $%
!ω ∈Ω

∑ ×P (ω2, τ ) ( !ω , !n )"# $% = P (ω2, τ ) (ω1, !τ )"# $%,  --- Eq.(14) 

as a result of the Chapman-Kolmogorov equation. When the upward extension reaches the 

root ( nR ), we could retract the extension if the following equation is satisfied: 
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     P ( !ω , nR ) υ,ΘS
#$ %&×P (ω, n

D (bI
0 )) ( !ω , nR )#

$
%
&{ }

!ω ∈Ω

∑ = pI ω;υ, n
D (bI

0 )( ) .   --- Eq.(15) 

Here bI
0  is the branch where the site is inserted in the Dollo parsimonious history. 

Comparing Eq.(15) to Eq.(13) with the substitutions !τ = nR  and τ = nD (bI
0 ) , we see that, 

along with Eq.(13), the following equation is necessary and sufficient. 

Condition (v):    P (ω, nR ) υ,ΘS
"# $%= pI ω;υ, n

R( ) .               --- Eq.(15’) 

The conditions (iv) and (v) could be rephrased in the following words. 

“The inserted residue probabilities at the root, pI ω;υ, n
R( ){ }

ω∈Ω
, are identical to the initial 

residue probabilities, P (ω, nR ) υ,ΘS
"# $%{ }

ω∈Ω
. And the inserted residue probabilities along 

the tree, pI ω;υ, τ( ){ }
ω∈Ω, τ∈T

, also evolve according to the continuous-time Markov model of 

substitutions at the site (with ancestry υ ).” 
These conditions were automatically satisfied in most of the past evolutionary models with 
indels (e.g., [88-91]), because these models used time-reversible substitution models and 
assumed that the inserted residue probabilities are given by the equilibrium frequencies of the 
substitution model. 
 (III-9) Some indel histories leave “null” MSA columns consisting only of gaps. 
Usually, they do not appear in an input MSA. Let us consider Eq.(12a) or Eq.(12b) 
compatible with an indel history resulting in such a null column. After retracting all the 

downward extensions in such a case, we are left with a point, which is either the root (nR ) or 
an insertion point ( tI (bI ) ). In the former case the site-wise probability reduces to 

P (ω R, nR ) υ,ΘS
"# $%

ωR ∈Ω

∑ , and in the latter case it reduces to pI ω I ;υ, tI (bI )( )
ωI ∈Ω

∑ . Either way, 

the probability becomes 1  (unity). Thus, the “null” MSA columns give trivial probabilities 
due to substitutions. 
 (III-10) Thus, we proved that, under the conditions (iv) and (v) (i.e., under Eq.(13) 
and Eq.(15’)), the site-wise probabilities, Eq.(12a) and Eq.(12b), do not depend on the details 

on 
ψID[υ] . Thus, under these conditions, P α[υ]

ψID[υ], υ,Θ, T
"
#$

%
&'  in Eq.(11) becomes 

equal to P α[υ]

ψID
0 α[υ][ ], υ,Θ, T"

#
$
%, where 


ψID
0 α[υ][ ]  is the Dollo parsimonious indel 

history for the column α[υ] . Substituting this result into Eq.(10), we have: 



 11 

P
ψS
ψID,Θ, T

"
#$

%
&'ψS∈ 

ΨS

α;
ψID ;T"

#
%
&

∑ = P α[υ]

ψID
0 α[υ][ ], υ,ΘS, T"

#
%
&

υ ∈ ϒ

α;T[ ]
∏ .   --- Eq.(10’) 

The right hand side of Eq.(10’) depends only on α  but not on other details of 
ψID , because 

the set of Dollo parsimonious histories, 

ψID
0 α[υ][ ]{ }

υ ∈ ϒ

α;T[ ]

, is uniquely determined by α . 

Recalling the conditions (ii) and (iii), we could re-interpret the right-hand side of Eq.(10’) as 
the probability of α , given α , ΘS  and T . This also conforms to the standard calculation 

of the probability of a MSA via substitutions (e.g., [1,2,62]). Thus, we have: 

P
ψS
ψID,Θ, T

"
#$

%
&'ψS∈ 

ΨS

α;
ψID ;T"

#
%
&

∑ = P α α,ΘS, T"# %& = L ΘS, T( ) α .   --- Eq.(10”) 

On the right hand side, we omitted α  from the argument of the likelihood, because α  
trivially follows from α .  

(IV) Substituting Eq.(8) and Eq.(10”) into Eq.(7), the complete-likelihood can be 
rewritten as: 

      

L Θ, T( ) α = P
ψID ΘID, T"

#
$
%× L ΘS, T( ) α{ }

ψID∈ 
Ψ ID α;T[ ]

∑

= P
ψID ΘID, T"

#
$
%ψID∈ 

Ψ ID α;T[ ]

∑
*
+
,

-,

.
/
,

0,
× L ΘS, T( ) α .

    --- Eq.(7’) 

Because Ψ ID α;T[ ]  is the set of all indel processes (including the “basic” root states) that 

can give rise to α , the summation on the right hand side of Eq.(7’) is actually the probability 
of α  under given ΘID  and T : 

   P
ψID ΘID, T"

#
$
%ψID∈ 

Ψ ID α;T[ ]

∑ = P α ΘID, T"# $% = L ΘID, T( ) α .    --- Eq.(16) 

Substituting Eq.(16) into Eq.(7’), we obtain the final result: 
     L Θ, T( ) α = L ΘID, T( ) α × L ΘS, T( ) α .        --- Eq.(7”) 

Thus, provided that the conditions (i)-(v) are satisfied, the “complete likelihood” of the entire 
evolutionary model (Θ = (ΘS,ΘID ) ) (and a tree T ) under a given MSA ( α ) can be factorized 
into the product of two likelihoods. One is the likelihood of the substitution model (ΘS ), 

which can be exactly calculated via the widely accepted pruning algorithm (e.g., [1,2,62,63]). 
And the other is the likelihood of the indel model (ΘID ), which can be calculated quite 

accurately via our ab initio perturbative formulation of the general continuous-time Markov 
model [37,60,61].  

(V) Taking the logarithms of both sides of Eq.(7”), we see that the logarithm of the 
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complete likelihood (called the “complete-likelihood score” here) is the summation of the 
logarithms of the two likelihoods. 
 
SM-2. Pre-processing MSAs: details 
In principle, MSA aligners can only reconstruct the “homology structure” of a MSA, which 
describes the mutual homology relationships among the residues (or sites) in the homologous 
sequences (e.g., [83]). They cannot predict further details concerning the indel processes that 
produced the sequences. Therefore, we pre-processed each of the true and reconstructed 
MSAs so that MSAs with the same homology structure will be represented identically. 
Specifically, we first removed MSA columns consisting only of gaps. Then, we swapped two 
adjacent blocks, each consisting only of the columns with the same gap pattern, when they 
satisfied the following two conditions. (1) A block contains residues only in sequences that 
contain exclusively gaps in the other block. (In other words, the set of sequences with 
residues in one block does not overlap that in the other.) (2) Viewed in the MSA, the highest 
sequence with a residue in the left block is higher than that in the right block. The swapping 
was re-iterated until no adjacent pair of blocks was found swappable. 
 
SM-3. Partitioning pair of MSAs into correct and erroneous segments: details 
We partitioned a pair of true and reconstructed MSAs into correctly and erroneously 
reconstructed segments (or “correct” and “erroneous” segments for short) in a manner similar 
in philosophy to but slightly different from that by [27], by a column-by-column comparison 
of the two MSAs. It should be noted, however, that there are a few differences between the 
current method and the method in [27]. (i) In this study, we also distinguished gaps between 
different pairs of residues in each sequence. (ii) When an erroneously reconstructed segment 
begins or ends in the middle of a gapped segment, it was extended to accommodate the entire 
gapped segment. This guarantees correct calculation of the complete likelihood score. And 
(iii) if the two MSAs give an identical set of inferred indel histories, the segment was 
reclassified as “correct.” 

Here we detail how we partitioned a MSA pair. First, in each of the true and 
reconstructed MSAs, each residue of each sequence was assigned a number, which is the 
count of residues on its left along the sequence. Then, each gap character (“-“) was also 
assigned a number, which is the average of the numbers assigned to the residues on its 
immediate left and right. (For example, we assign 10.5 to all gaps in a run of gaps sandwiched 
by the residues numbered 10 and 11.) This happens to be effectively equivalent to the “pos” 
recoding of gap characters [92], and to the “evol” recoding (ibid.) when dealing with 
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position-shift blocks (see sections M6 and M7 of Methods in the main text and sections SM-3 

and SM-5 below). This way, each column of each MSA is equipped with a vector of the 
assigned numbers, which are arranged in the same order as the sequences in the MSA. The 
true and reconstructed MSAs were then compared column by column. Two columns were 
judged as “equivalent” if both give the same vector. According to this column-wise 
comparison, the pair of MSAs was tentatively partitioned into an alternating series of correct 
and erroneous segments. Each correct segment is a contiguous set of pairs of equivalent 
columns. Each erroneous segment is a pair of segments, one of which is a contiguous set of 
columns in the true MSA whose equivalents were not found, and the other is its counterpart in 
the reconstructed MSA. Then, if a tentative erroneous segment ends in the middle of a gapped 
segment (i.e., a segment of MSA consisting of contiguous gapped columns), the erroneous 
segment was extended to encompass the entire gapped segment. Accordingly, the neighboring 
correct segment was retracted. This process is necessary for the correct calculation of MSA 
scores, especially the complete-likelihood scores. Then, finally, we examined whether or not 
the pair of MSAs in each tentative erroneous segment were actually equivalent, potentially 
resulting from an identical set of local indel histories. Such equivalence typically involves 
different representations of two or more independent insertions (or a deletion followed by an 
insertion) that occurred between two successive correct segments (see, e.g., Figure 5 of [37]). 
When the pair turned out to be equivalent, the tentative “erroneous” segment was re-classified 
as “correct,” and it was merged with the flanking “correct” segments. 
 

SM-4. Partitioning position-shift map into position-shift blocks: details 

As can be seen from panel C of Figures 1, and S1-S3, a position-shift map usually has a clear 
block structure, where each block with a position-shift is delimited by two positions along the 
MSA and one or more branches in the tree. There could be a number of strategies to identify 
the blocks. In this study, we employed a “bottom-up” strategy, in which small blocks were 
constructed first, and then they were merged to form larger blocks. An important thing is how 
to handle some common exceptions, such as gaps in a block, multiple independent yet exactly 
aligned blocks sharing a position-shift, nested blocks, and a block interrupted by insertions 
along remote branches. The detailed procedure is as follows. 

Given a position-shift map, we first chopped each sequence into segments, each of 
which consists of contiguous residues with the same position-shift. When two segments with 
the same position-shift were separated by a run of gaps alone, they were merged. Second, 
looking across the sequences, the segments with the same position-shift and sharing the same 
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start and end coordinates (in the MSA) were merged into a tentative block, and its boundaries 
on the phylogenetic tree were examined. If the set of sequences were delimited by the 
boundaries fewer than the sequences, the tentative block was established. Otherwise, the 
sequence set was split into two sub-sets at their most recent common ancestor, and the 
boundaries were examined again. This “split-and-examine” process continued until the 
boundaries become fewer than the sequences in every sub-set. Third, if three blocks with the 
same position-shift enclosed another block with a different position-shift, the three blocks 
were merged into a larger block. And, finally, if two or more neighboring blocks with 
different position-shifts were separated only by insertions along non-delimiting branches, and 
if the blocks had consistent position-shifts, they were merged into a “composite block” (like 
the blue and red blocks in Figure S2 D). 
 
SM-5. MSA-specific types of errors 
In addition to the error types in pairwise alignments (PWAs), namely, “shift,” “merge,” 
“split,” “purge,” and “ex-nihilo” [27] (see panels A-D of Figure 5), we newly defined the 
following “elementary” error types (requiring only a single block-wise move) that can only 
occur in MSAs (panels E-H of Figure 5). The definitions were based on the actual (anecdotal) 
comparisons between true and reconstructed MSAs and on the brief considerations of their 
likeliness, based on the resulting changes in the MSA scores. The following definitions are 
just the translations into words of the intuitive definitions (in Figure S6) and their equivalents 
(when the tree gets unrooted). 

(1) A “vertical merge,” which has two types. In one type, two neighboring 
deletion-derived gaps along two sibling branches are erroneously aligned 
together to form a wrong gap derived from a spurious deletion along the parent 
branch (Figure S6 A,B). In the other type, a correct gap was derived from an 
insertion along a branch, and another correct gap was derived from a 
neighboring deletion along one of the branch’s children. Then, they are 
erroneously aligned together to form a wrong gap derived from a spurious 
insertion along the other child of the branch. 

(2) A “vertical split,” which is the reverse of a vertical merge. In other words, a 
“vertical split” becomes a “vertical merge” if the true and reconstructed MSAs 
swap their roles. 

(3) A “collapse of independent insertions (CII),” which has two types. In one type, 
two neighboring equally long inserted sequences along two branches (neither 
siblings nor parent-child) are erroneously aligned together to form multiple 
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wrong gaps derived from multiple spurious deletions along other branches 
(Figure S6 C,D). In the other type, two equally long sequences, one aligned 
with a gap derived from a deletion along a branch, and the other created by a 
neighboring insertion along one of the branch’s grandchild or more remote 
descendant, are erroneously aligned together. In a modified version of CII, 
instead of the relevant sequences themselves, their flanking sequences, or one 
relevant sequence and the flanking sequence of the other, are erroneously 
aligned together. 

(4) A “creation of spurious independent insertions (CSII),” which is the reverse of 
a CII. 

(5) An “incomplete collapse of independent insertions (iCII),” which is similar to 
CII, but occurs between gaps of different lengths (Figure S6 E,F), whereas a 
CII occurs between equally long gaps. 

(6) An “incomplete creation of spurious independent insertions (iCSII),” which is 
the reverse of an iCII. 

(7) We also defined some other types, such as “partial merge/split,” “partial 
vertical merge/split,” “overshoot-merge/split,” etc. See the subroutine, 
“classify_error_assoc_w_sgl_cblk,” of the prototype Perl script, 
“classify_msa_errors_via_mblks.alpha2.pl,” in the “ComplLiMment” package 
(in Additional file 2) for detailed conditions to define them. 

 
Errors that do not fall into these categories were tentatively classified as “complex.” 
(See SM-7 for more details on the “complex” errors.) 

 
SM-6. Associating MSA error with single position-shift block 
The idea underlying the procedures in this and the next sections is to compare two indel 
histories, one inferred from the true MSA and the other from the reconstructed MSA, and to 
attribute the history differences to the moves of position-shift blocks (see, e.g., Figure 5). In 
general, the move of a block will change the predictions on indels along its delimiting 
branches and/or their neighboring branches. Thus, the key is to identify such indels from the 
inferred histories. The following is the detailed procedure. 

Specifically, we used a pair of position-shift maps, one on the true MSA and the 
other on the reconstructed MSA, and examined the move of each position-shift block between 
the two maps and the resulting changes in the inferred indel history. For simplicity, we here 
used the Dollo parsimonious indel histories [84] inferred from the two MSAs. For each 
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position-shift block, we also attempted to determine a “main” branch that delimits the block. 
If the block had only one delimiting branch, it became the one. If the block had two or more 
delimiting branches, we first excluded those that were already the “main” delimiting branches 
of other blocks. If only one branch remained, it was used for the “main” delimiting branch; 
otherwise, we suspended the examination of the block. Then, for each block in each MSA, we 
listed “involved” indel events, each of which is defined as an event satisfying two conditions: 
(1) it either overlaps or flanks the block (along the MSA); and (2) it occurred either along the 
main delimiting branch or along its parent, child, or sibling. An “involved” indel event in a 
MSA was removed from the list if it had its equivalent in the other MSA. Finally, we judged 
what type of MSA error is associated with the block by comparing the two lists of indel 
events “involved” with the block, one in the true MSA and the other in the reconstructed 
MSA. In the following, we will explain some specific example cases. 

(i) The error was regarded as a “shift” if the block in each MSA was flanked by 
only one event along the main delimiting branch, and if the corresponding 
events in the two MSAs were equally long, of the same type (i.e., insertion or 
deletion), and on opposite sides of the block (Figure 5 A). 

(ii) It was regarded as a “merge” in either of the following two cases. (1) If the 
blocks in the true and reconstructed MSAs involved two events and one event, 
respectively, all of the same type, and if the length of the latter event is the 
summation of the lengths of the former events (Figure 5 B). (2) If the block in 
the true MSA involved two events of opposite types, if the block in the 
reconstructed MSA involved one event that is of the same type as the longer 
event in the true MSA, and if the length of the reconstructed event equals the 
difference of the lengths of the true events (Figure 5 C). 

(iii) It was regarded as a “split” in an “opposite” case from either of (ii), that is, 
if we observed nearly the same situation as either of the cases in (ii), with the 
only difference that the roles of true and reconstructed MSAs were swapped. 

(iv) It was regarded as a “purge” if the block in the true MSA involved two events, 
of opposite types and of an equal length, and if the block in the reconstructed 
MSA involved no events (Figure 5 D). 

(v) It was regarded as an “ex-nihilo” in an opposite case from (iv). 
(vi) It was regarded as a “vertical merge” if the block in the true MSA involved two 

equally long events, one along the delimiting branch and the other along its 
parent, child, or sibling branch, and if the block in the reconstructed MSA 
involved only a single event along yet another branch which is also the parent, 
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child, or sibling of the delimiting branch (Figure 5 E, F). 
(vii) It was regarded as a “vertical split” in an opposite case from (vi). 
(viii) It was regarded as a “collapse of independent insertions (CII)” if the 

following three conditions are satisfied. (a) The block in the true MSA was 
flanked from one end by an insertion along a branch that is not the delimiting 
branch, its parent, child, or sibling. (b) The block was also overlapped by 
another equally long insertion on the other end and along the delimiting branch. 
And (c) both insertions disappeared and instead multiple spurious deletions 
emerged on the former end of the corresponding block in the reconstructed 
MSA (Figure 5 G). Similarly, a CII was called also in a case where the true 
MSA resulted from a deletion along a branch and an insertion along its 
grandchild or more remote descendant (see item (3) in SM-5).  

(ix)  It was regarded as a “creation of spurious independent insertions (CSII)” in an 
opposite case from (viii). 

(x)  It was regarded as an “incomplete collapse of independent insertions (iCII)” in 
a case similar to (viii), with the only difference that the two inserted sequences 
in the true MSA were not equally long (and therefore only one insertion 
disappeared in the reconstructed MSA) (Figure 5 H). 

(xi)  It was regarded as an “incomplete creation of spurious independent insertions 
(iCSII)” in an opposite case from (x). 

 
We actually defined more cases in which an error associated with a block was considered to 
be of a definite type. [The precise conditions for the error-type vs. block associations are 
implemented in the subroutine, “classify_error_assoc_w_sgl_cblk,” of the prototype Perl 
script, “classify_msa_errors_via_mblks.alpha2.pl,” in the “ComplLiMment” package (in 
Additional file 2).] 
 
SM-7. Associating pair of MSA errors with pair of position-shift blocks 
After the first round of analysis described in SM-6, we re-examined those position-shift 
blocks that could not be associated with any errors of definite types. Here we tentatively refer 
to such a block as a “complex block.” And we refer to a block whose examination was 
suspended in the first round as a “suspended block.” Broadly speaking, after identifying pairs 
of seemingly interacting blocks, we first considered two series (or “paths”) of moves of two 
blocks in each pair, second “restored” an intermediate MSA in each series by undoing the 
move of the second block in the series, third compared the intermediate MSA with both the 



 18 

true and the reconstructed MSAs, and finally chose the series explained by a simpler pair of 
errors. The following is the detailed procedure. 
 First, we noticed some cases in each of which a complex or suspended block (like 
the purple block in Figure 1, panel D) could be absorbed into a neighboring block (like the 
blue one) to form a larger block. Thus, we absorbed a complex or suspended block (called 
“block A” here) into another block (called “block B” here), which is either complex or 
associated with a definite error, if the following four conditions were fulfilled. : 
(a) The two blocks have the same shift. 
(b) The clades of the sequences involved with the two blocks are phylogenetically 
neighboring each other.  
(c) Block A is completely aligned with block B, that is, there should be no part of block A 
horizontally sticking out of block B in either reference or reconstructed MSA. 
(d) The set of indel events involved with block A is completely included in the event set 
involved with block B, regarding both MSAs. 
 After excluding the absorbed blocks, we attempted to form pairs of blocks out of 
the remaining complex blocks and blocks associated with definite errors. For this purpose, we 
first made a graph by linking two blocks that involve the same indel event. Then, we formed 
clusters, each of which consists of all blocks that are directly or indirectly linked with one 
another. Then, we picked only clusters of two blocks each as “block-pairs.” (From the 
following analysis, we excluded those pairs that consist only of blocks associated with 
definite errors.) 
 Finally, we attempted to associate each block-pair with a pair of errors of definite 
types (as in Figure S1) in the following manner. (Here, the components of the subject 
block-pair will be referred to as “block C” and “block D.”) For the block-pair, we obtained 
two “intermediate MSAs” from the reconstructed MSA: one (denoted as “rec-C”) by undoing 
the move of block C, and the other (denoted as “rec-D”) by undoing the move of block D. 
The two intermediate MSAs correspond to two different paths of block-wise moves, both 
starting from the reference MSA and leading to the reconstructed MSA. For example, “rec-C” 
could occur in a path where block D moves before the move of block C. Thus, we attempted 
to associate block D with a definite error by comparing the indel events inferred from the 
reference MSA with those from “rec-C,” and to associate block C with a second definite error 
by comparing the events inferred from “rec-C” with those from the reconstructed MSA. Each 
association was attempted just as in SM-6. If successful, this associates the block-pair with a 
pair of definite errors. Also, if successful, the use of “rec-D” associates the block-pair with 
another pair of definite errors. If both attempts were successful, the simpler pair of errors was 
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chosen. If only one attempt was successful, the resulting pair of errors was associated to the 
block-pair. If neither attempt was successful, the results of the first round were retained. 
 After these analyses were completed, some complex blocks could neither be 
associated with definite errors nor be incorporated into any other block. We regarded these 
blocks as involved in “complex” errors. 
 
SM-8. Theoretical mean lengths of gapless and gapped segments  
The current versions of both methods, one to calculate the complete likelihood score and the 
other to characterize MSA errors via position-shift maps, depend on the existence of correctly 
reconstructed gapless columns, though they are not absolute requisites of the methods 
themselves. In addition, in order to avoid extremely long computation of the gap component 
of the complete-likelihood scores, we set an upper bound (say, LU1  bases) on the length of a 

gapped segment. For a meaningful characterization of erroneous segments, it is also necessary 
that the erroneous segments only rarely contain gapped segment longer than LU1 . Here let us 

calculate the mean lengths of a gapless segment and a gapped segment. 
For simplicity, we will consider a space-homogeneous indel model of Dawg [52]. 

(For more general cases, see [37].) Let λI  and λD  be the total rates of insertions and 

deletions, respectively, per site per expected substitution. Then, the total rate that a sequence 
of length L  experiences an insertion or a deletion is: RX (L) = λI (L −1)+ λD (L −1+ lD ) , 
where lD  is the mean deletion length. [NOTE: This “exit rate” is smaller than that in [52] by 
2λI , because we consider insertions at either end of the subject sequence as irrelevant.] Thus, 

the probability that a sequence of length L  has experienced no indel throughout a 
phylogenetic tree (T , with total branch length T ) is: 

 Pno−indel (L;T ) = exp − T RX (L){ }= exp − T λI (L −1)+ λD (L −1+ lD )( ){ } . --- Eq.(SM-8.1) 

From this, the probability that a particular ancestral site results in a gapless column is: 

PGLC ≡ P gapless column T"# $%= Pno−indel (L =1;T ) = exp − T λD lD( ) .  --- Eq.(SM-8.2) 

And the probability that a column flanking a gapless column is also gapless is: 

PFGLC ≡ P flanking gapless column gapless column, T"# $%= exp − T (λD + λI )( ) .  

--- Eq.(SM-8.3) 
Using Eqs.(SM-8.2,3), we have: 

 Pno−indel (L;T ) = PGLC PFGLC( )L−1  --- Eq.(SM-8.1’) 
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From Eqs.(SM-8.1,3), the probability to have a gapless segment of length L  at a particular 
position is: 

PGLS (L ;T ) = (1−PFGLC )
2 Pno−indel (L ;T ) = 1−PFGLC( )2 PGLC PFGLC( )L−1 .   --- Eq.(SM-8.4) 

Along an ancestral sequence of length LA , there are ( LA − L +1) positions where a gapless 
segment of length L  can reside. When LA  is sufficiently long, the variable part, − L +1, 

becomes negligible. Thus, the mean length of a gapless segment is approximately given by: 
 

LGLS (T ) ≈ l PGLS (l;T )l=1

LA∑#$%
&
'( PGLS (l;T )l=1

LA∑#$%
&
'( ≈

1
1−PFGLC( )  . --- Eq.(SM-8.5) 

Among the LA  sites of the ancestral sequence, LA PGLC  sites are expected to give gapless 
columns. Thus, on average, there should be NGLS = LA PGLC LGLS (T ) ≈ LA PGLC 1−PFGLC( )  
gapless segments along the ancestral sequence. Using these quantities, we can roughly 
calculate the average number of ancestor-derived columns in a gapped segment as: 

NADC∈GS (T ) ≈ LA (1−PGLC ) NGLS ≈ (1−PGLC ) PGLC 1−PFGLC( )$% &'

= exp T λD lD( ) −1$
%

&
' 1− exp − T (λD + λI )( )$% &' .

  --- Eq.(SM-8.6) 

In general, however, gapped segments contain insertion-derived columns as well. At present, 
we don’t know exactly how many such columns should be. Nevertheless, by resorting to a 
time-reversed counterpart of the evolutionary model, the number may be approximated as 
follows: 

NIDC∈GS (T ) ≈ exp T λI lI( ) −1$
%

&
' 1− exp − T (λD + λI )( )$% &' .   --- Eq.(SM-8.7) 

Here lI  denotes the mean insertion length. Combining Eqs.(SM-8.6,7), we get a rough 
estimation of the average size of a gapped segment: 

LGS (T ) = NADC∈GS (T )+ NIDC∈GS (T )

≈ exp T λD lD( ) + exp T λI lI( ) − 2$
%

&
' 1− exp − T (λD + λI )( )$% &' .

 --- Eq.(SM-8.8) 

In the limit T  0 , Eq.(SM-8.8) reduces to LGS (T ) λD lD +λI lI( ) λD + λI( ) , as expected. 

Moreover, in the limit T ∞ , LGS (T )  approaches infinity, also as expected.  
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Supplementary tables 
 
Table S1. Correspondence between sequence IDs and species names 
 

12 primates 15 mammals 9 fast-evolving mammals 
Sequence ID Species name Sequence ID Species name Sequence ID Species name 

prim001 human mamm001 human fema001 human 

prim002 chimpanzee mamm002 chimpanzee fema002 galago 

prim003 orangutan mamm003 colobus 

monkey 

fema003 mouse 

prim004 gibbon mamm004 baboon fema004 rabbit 

prim005 colobus 

monkey 

mamm005 macaque fema005 cow 

prim006 vervet mamm006 dusky titi fema006 hdgehog 

prim007 baboon mamm007 owl monkey fema007 shrew 

prim008 macaque mamm008 marmoset fema008 tenrec 

prim009 dusky titi mamm009 mouse lemur fema009 rock hyrax 

prim010 owl monkey mamm010 galago  

prim011 marmoset mamm011 cow 

prim012 squirrel 

monkey 

mamm012 dog 

 mamm013 horseshoe bat 

mamm014 armadillo 

mamm015 elephant 

NOTE: They were extracted from the 36-species tree of [65]. 
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Table S2. Frequencies of three broad score categories 
Aligner MAFFT 

(progressive) a 
MAFFT   

(iterative) a 
Prank 

12 primates 

I 19967 (13.8%) 6320 (4.5%) 17238 (12.8%) 

D 28937 (20.0%) 32719 (23.5%) 2864 (2.1%) 

S 95510 (66.1%) 100096 (71.9%) 114994 (85.1%) 

Overall 144414 (100%) 139135 (100%) 135096 (100%) 

15 mammals 

I 103934 (33.7%) 43296 (12.7%) 123919 (34.1%) 

D 106917 (34.6%) 172786 (50.7%) 26407 (7.3%) 

S 97928 (31.7%) 124674 (36.6%) 213546 (58.7%) 

Overall 308779 (100%) 340756 (100%) 363872 (100%) 

9 fast-evolving mammals 

I 13513 (56.5%) 5486 (10.6%) 15530 (44.7%) 

D 4753 (19.9%) 31330 (60.5%) 4505 (13.0%) 

S 5667 (23.7%) 14937 (28.9%) 14732 (42.4%) 

Overall 23933 (100%) 51753 (100%) 34767 (100%) 

 
NOTE: In each cell, outside of the parentheses is the number of erroneous segments of a 
specific score category (row) via a specified aligner (column), and the number in the 
parentheses is its percentage relative to the overall total. For the definitions of the score 
categories, see Figure 3. 
a Specifically, we used E-INS-1 and E-INS-i, respectively, as the progressive and iterative 
options of MAFFT. 
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Table S3. Erroneous segments in which reconstructed MSA is “far-apart” from true 
MSA (via E-INS-1 (i.e., progressive) of MAFFT) 
 

 w/ many block-wise steps a w/ many site-wise steps b long blocks c 

Score 
category 

MAFFT 
(E-INS-1) 

MAFFT 
(E-INS-1) 

MAFFT 
(E-INS-1) 

12 primates 

I 1.5% 2.6% 1.0% 

D 2.2% 4.3% 1.7% 

S 0.1% 0.1% 0.1% 
Overall 0.7% 1.3% 0.6% 

15 mammals 

I 38.7% 37.3% 6.8% 

D 35.3% 33.3% 5.8% 

S 3.9% 2.9% 0.9% 

Overall 26.5% 25.0% 5.7% 

9 fast-evolving mammals 

I 71.3% 71.1% 9.2% 

D 59.8% 57.4% 6.4% 

S 14.2% 12.4% 2.0% 

Overall 55.5% 54.5% 8.5% 

The same note and footnotes apply as those for Table 3. 
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Table S4. Frequencies of errors of different types in MSAs among 9 fast-evolving 
mammals 
 

Error type MAFFT 
(E-INS-1) 

(%) MAFFT 
(E-INS-i) 

(%) Prank 
(Best-fit) 

(%) 

Shift 5069 (21.21%) 10035 (19.42%) 11019 (31.77%) 

Merge 273 (1.14%) 732 (1.42%) 429 (1.24%) 

Purge 686 (2.87%) 1570 (3.04%) 645 (1.86%) 

Split 1 (0.004%) 0 (0%) 104 (0.30%) 

Ex-nihilo 0 (0%) 0 (0%) 20 (0.06%) 

v-Merge a 104 (0.44%) 159 (0.31%) 221 (0.64%) 

v-Split b 5 (0.02%) 6 (0.01%) 62 (0.18%) 

CII c 47 (0.20%) 420 (0.81%) 15 (0.04%) 

iCII d 57 (0.24%) 597 (1.16%) 9 (0.03%) 

Others e 56 (0.23%) 136 (0.26%) 155 (0.45%) 

Mixture f 1655 (6.92%) 3720 (7.20%) 2841 (8.19%) 

(Paired) g (771) (3.23%) (1469) (2.84%) (1293) (3.73%) 

Complex h 15948 (66.73%) 34294 (66.37%) 19161 (55.25%) 

Total 23901 (100%) 51669 (100%) 34681 (100%) 

The same note and footnotes apply as those for Table 4. 
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Table S5. Combinations of error types associated with pairs of blocks 
A. Via MAFFT (E-INS-i, i.e., iterative) 

Error-type 
combination a 

12 primates (%) 15 mammals (%) 9 fast-evolving 
mammals (%) 

Merge + Shift 4575 (74.2%) 20809 (62.1%) 2947 (57.2%) 

Shift + Shift 153 (2.5%) 3417 (10.2%) 699 (13.6%) 

v-Merge + Shift 418 (6.8%) 2108 (6.3%) 384 (7.5%) 

Merge + Merge 89 (1.4%) 962 (2.9%) 156 (3.0%) 

Merge + iCII 45 (0.7%) 865 (2.6%) 102 (2.0%) 

p-v-Merge b + Shift 253 (4.1%) 602 (1.8%) 71 (1.4%) 

iCII + Shift 46 (0.7%) 478 (1.4%) 48 (0.9%) 

Merge + Purge 36 (0.6%) 459 (1.4%) 90 (1.7%) 

CII + Merge 13 (0.2%) 278 (0.8%) 45 (0.9%) 

Purge + Shift 17 (0.3%) 244 (0.7%) 44 (0.9%) 

Other combinations 522 (8.5%) 3283 (9.8%) 568 (11.0%) 

Total 6167 (100%) 33505 (100%) 5154 (100%) 

 
B. Via Prank (Best-fit) 

Error-type 
combination a 

12 primates (%) 15 mammals (%) 9 fast-evolving 
mammals (%) 

Merge + Shift 1390 (42.6%) 11481 (33.7%) 1191 (27.8%) 

Split + Shift 495 (15.2%) 6404 (18.8%) 617 (14.4%) 

Shift + Shift 100 (3.1%) 3881 (11.4%) 838 (19.6%) 

v-Merge + Shift  188 (5.8%) 2447 (7.2%) 422 (9.9%) 

v-Split + Shift 137 (4.2%) 1397 (4.1%) 200 (4.7%) 

Merge + Split 160 (4.9%) 1013 (3.0%) 94 (2.2%) 

v-Merge + Split 79 (2.4%) 802 (2.4%) 106 (2.5%) 

v-Split + Merge 48 (1.5%) 523 (1.5%) 63 (1.5%) 

p-v-Merge b + Shift 103 (3.2%) 495 (1.5%) 60 (1.4%) 

CEII + Shift 59 (1.8%) 392 (1.1%) 39 (0.9%) 

Other combinations 502 (15.4%) 5272 (15.5%) 647 (15.1%) 

Total 3261 (100%) 34107 (100%) 4277 (100%) 

 
(continues to the next page)
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C. Via MAFFT (E-INS-1, i.e., progressive) 

Error-type 
combination a 

12 primates (%) 15 mammals (%) 9 fast-evolving 
mammals (%) 

Merge + Shift 4551 (68.6%) 18317 (57.2%) 1356 (50.2%) 

Shift + Shift 187 (2.8%) 3801 (11.9%) 491 (18.2%) 

v-Merge + Shift 570 (8.6%) 2873 (9.0%) 349 (12.9%) 

Merge + Merge 92 (1.4%) 759 (2.4%) 68 (2.5%) 

p-v-Merge b + Shift  290 (4.4%) 551 (1.7%) 21 (0.8%) 

Merge + iCII 46 (0.7%) 485 (1.5%) 14 (0.5%) 

Merge + Purge 36 (0.5%) 419 (1.3%) 40 (1.5%) 

iCII + Shift 76 (1.1%) 366 (1.1%) 16 (0.6%) 

v-Split + Shift 32 (0.5%) 312 (1.0%) 20 (0.7%) 

v-Merge + Split 60 (0.9%) 273 (0.9%) 16 (0.6%) 

Other combinations 692 (10.4%) 3886 (12.1%) 311 (11.5%) 

Total 6632 (100%) 32042 (100%) 2702 (100%) 

 
NOTE: The paired types listed here are the top 10 pairs for MSAs of 15 mammals.  
a The names of error types (except  b) are the same as those in Table 4. 
b Partial vertical merge, where gaps (or sequences) of different lengths are vertically aligned. 
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Table S6. Measures of misestimated indel counts 
 

Measure a ordinary difference L1 distance deletion bias 

Score 
category 

MAFFT 
(E-INS-i) 

Prank 
(Best-fit) 

MAFFT 
(E-INS-i) 

Prank 
(Best-fit) 

MAFFT 
(E-INS-i) 

Prank 
(Best-fit) 

12 primates 

I 0.22 0.09 1.16 0.29 0.97 0.02 

D -0.07 0.24 1.18 1.07 0.76 -0.08 

S -0.06 -0.05 0.07 0.07 0.002 -0.001 

Overall -0.05 -0.03 0.38 0.12 0.22 -0.001 

15 mammals 

I 0.54 0.07 2.44 1.18 2.12 -0.02 

D -0.28 -3.46 4.24 5.82 3.01 -0.53 

S -0.44 -0.23 0.51 0.54 0.05 0.02 

Overall -0.23 -0.36 2.65 1.14 1.81 -0.04 

9 fast-evolving mammals 

I -0.43 -15.3 3.76 17.5 3.11 -0.41 

D -87.9 -215.9 93.6 218.9 -6.21 -22.5 

S 4.24 -0.93 7.00 1.27 4.58 0.000 

Overall -52.1 -35.6 59.2 37.1 -2.12 -3.14 

 
NOTE: The number in each cell is the specified measure of the misestimated indel count by a 
specified aligner (column), averaged over erroneous segments belonging to a specified score 
category (row). 
a Three measures of the indel count misestimation. See section M8 of Methods for their 
definitions. 
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Table S7. Measures of misestimated indel counts (via MAFFT, E-INS-1 (i.e., 
progressive)) 
 

Measure a ordinary difference L1 distance deletion bias 

Score 
category 

MAFFT 
(E-INS-1) 

MAFFT 
(E-INS-1) 

MAFFT 
(E-INS-1) 

12 primates 

I 0.05 0.69 0.53 

D -0.13 1.12 0.69 

S -0.06 0.07 0.003 

Overall -0.06 0.37 0.21 

15 mammals 

I -0.68 3.21 2.18 

D -0.63 3.82 2.59 

S -0.44 0.49 0.04 

Overall -0.59 2.56 1.65 

9 fast-evolving mammals 

I -72.7 75.0 0.38 

D -7.78 10.0 3.46 

S -1.25 1.32 0.15 

Overall -43.2 45.0 0.93 

The same note and footnote apply as those for Table S6. 
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Supplementary figures (with legends) 
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A. True MSA                      B. Reconstructed MSA << Original Segment of the Reference Alignment: >>

(position)     0123456789
                         
mamm001        CTTT------
mamm002        CTTT------
mamm003        CTTT------
mamm004        CTTT------
mamm005        CTTT------
mamm006        GTTT------
mamm007        TTTT------
mamm008        CTTT------
mamm009        TGTT------
mamm010        CGTT------
mamm011        CGTT------
mamm012        CGTT---TGT
mamm013        CGTT------
mamm014        -GTTCAC---
mamm015        -TTTCAC---

<< Original Segment of the Reconstructed Alignment: >>

(position)     0123456
                      
mamm001        CTTT---
mamm002        CTTT---
mamm003        CTTT---
mamm004        CTTT---
mamm005        CTTT---
mamm006        GTTT---
mamm007        TTTT---
mamm008        CTTT---
mamm009        TGTT---
mamm010        CGTT---
mamm011        CGTT---
mamm012        CGTTTGT
mamm013        CGTT---
mamm014        GTTCA-C
mamm015        TTTCA-C

<<<<< Preliminary (1): Map the position shifts (from reference to reconstructed) onto the Reconstructed MSA... >>>>>

($shift_lf, $shift_rf) = (0, -3) .

[ Shifts in the Reconstructed MSA ]

(position)     0    1    2    3    4    5    6

mamm001       0    0    0    0    -    -    -
mamm002       0    0    0    0    -    -    -
mamm003       0    0    0    0    -    -    -
mamm004       0    0    0    0    -    -    -
mamm005       0    0    0    0    -    -    -
mamm006       0    0    0    0    -    -    -
mamm007       0    0    0    0    -    -    -
mamm008       0    0    0    0    -    -    -
mamm009       0    0    0    0    -    -    -
mamm010       0    0    0    0    -    -    -
mamm011       0    0    0    0    -    -    -
mamm012       0    0    0    0   -3   -3   -3
mamm013       0    0    0    0    -    -    -
mamm014      -1   -1   -1   -1   -1    -    0
mamm015      -1   -1   -1   -1   -1    -    0

              

<< Original Segment of the Reference Alignment: >>

(position)     0123456789
                         
mamm001        CTTT------
mamm002        CTTT------
mamm003        CTTT------
mamm004        CTTT------
mamm005        CTTT------
mamm006        GTTT------
mamm007        TTTT------
mamm008        CTTT------
mamm009        TGTT------
mamm010        CGTT------
mamm011        CGTT------
mamm012        CGTT---TGT
mamm013        CGTT------
mamm014        -GTTCAC---
mamm015        -TTTCAC---

<< Original Segment of the Reconstructed Alignment: >>

(position)     0123456
                      
mamm001        CTTT---
mamm002        CTTT---
mamm003        CTTT---
mamm004        CTTT---
mamm005        CTTT---
mamm006        GTTT---
mamm007        TTTT---
mamm008        CTTT---
mamm009        TGTT---
mamm010        CGTT---
mamm011        CGTT---
mamm012        CGTTTGT
mamm013        CGTT---
mamm014        GTTCA-C
mamm015        TTTCA-C

<<<<< Preliminary (1): Map the position shifts (from reference to reconstructed) onto the Reconstructed MSA... >>>>>

($shift_lf, $shift_rf) = (0, -3) .

[ Shifts in the Reconstructed MSA ]

(position)     0    1    2    3    4    5    6

mamm001       0    0    0    0    -    -    -
mamm002       0    0    0    0    -    -    -
mamm003       0    0    0    0    -    -    -
mamm004       0    0    0    0    -    -    -
mamm005       0    0    0    0    -    -    -
mamm006       0    0    0    0    -    -    -
mamm007       0    0    0    0    -    -    -
mamm008       0    0    0    0    -    -    -
mamm009       0    0    0    0    -    -    -
mamm010       0    0    0    0    -    -    -
mamm011       0    0    0    0    -    -    -
mamm012       0    0    0    0   -3   -3   -3
mamm013       0    0    0    0    -    -    -
mamm014      -1   -1   -1   -1   -1    -    0
mamm015      -1   -1   -1   -1   -1    -    0

 

 
C. Position-shift map                     D. Partitioning into position-shift blocks 

<< Original Segment of the Reference Alignment: >>

(position)     0123456789
                         
mamm001        CTTT------
mamm002        CTTT------
mamm003        CTTT------
mamm004        CTTT------
mamm005        CTTT------
mamm006        GTTT------
mamm007        TTTT------
mamm008        CTTT------
mamm009        TGTT------
mamm010        CGTT------
mamm011        CGTT------
mamm012        CGTT---TGT
mamm013        CGTT------
mamm014        -GTTCAC---
mamm015        -TTTCAC---

<< Original Segment of the Reconstructed Alignment: >>

(position)     0123456
                      
mamm001        CTTT---
mamm002        CTTT---
mamm003        CTTT---
mamm004        CTTT---
mamm005        CTTT---
mamm006        GTTT---
mamm007        TTTT---
mamm008        CTTT---
mamm009        TGTT---
mamm010        CGTT---
mamm011        CGTT---
mamm012        CGTTTGT
mamm013        CGTT---
mamm014        GTTCA-C
mamm015        TTTCA-C

<<<<< Preliminary (1): Map the position shifts (from reference to reconstructed) onto the Reconstructed MSA... >>>>>

($shift_lf, $shift_rf) = (0, -3) .

[ Shifts in the Reconstructed MSA ]

(position)     0    1    2    3    4    5    6

mamm001       0    0    0    0    -    -    -
mamm002       0    0    0    0    -    -    -
mamm003       0    0    0    0    -    -    -
mamm004       0    0    0    0    -    -    -
mamm005       0    0    0    0    -    -    -
mamm006       0    0    0    0    -    -    -
mamm007       0    0    0    0    -    -    -
mamm008       0    0    0    0    -    -    -
mamm009       0    0    0    0    -    -    -
mamm010       0    0    0    0    -    -    -
mamm011       0    0    0    0    -    -    -
mamm012       0    0    0    0   -3   -3   -3
mamm013       0    0    0    0    -    -    -
mamm014      -1   -1   -1   -1   -1    -    0
mamm015      -1   -1   -1   -1   -1    -    0     

 
Figure S1. Erroneous segment caused by two interacting errors. 
The true MSA was simulated along the tree in Figure 2 B. The red and blue blocks (with 
shifts -1 and -3, respectively,) were paired and associated with a “merge + iCII.” See the 
legend of Figure 1 for details on the notation.  
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A. True MSA                   B. Reconstructed MSA 

 

<< Original Segment of the Reference Alignment: >>

(position)     00000000001111
               01234567890123
                             
mamm001        AGTT--AAATCC-G
mamm002        AGTT--AAATCC-G
mamm003        AGTT--AAATCC-G
mamm004        AGTT--AAATCC-G
mamm005        AGTT--AAATCC-G
mamm006        AGTT--AAGTCC-G
mamm007        AGTT--AAGTCC-G
mamm008        AGTT--AAGTCC-G
mamm009        TGGT--GACTCAAG
mamm010        AGGT--AACTCC-G
mamm011        AGTA--AATGCG-G
mamm012        AGTA--AACGCC-G
mamm013        AGTA--CGCTCG--
mamm014        TGTTTAAAGTTC-T
mamm015        ATTTTACCCTCC-C

<< Original Segment of the Reconstructed Alignment: >>

(position)     0000000000111
               0123456789012
                            
mamm001        --AGTTAAATCCG
mamm002        --AGTTAAATCCG
mamm003        --AGTTAAATCCG
mamm004        --AGTTAAATCCG
mamm005        --AGTTAAATCCG
mamm006        --AGTTAAGTCCG
mamm007        --AGTTAAGTCCG
mamm008        --AGTTAAGTCCG
mamm009        -TGGTGACTCAAG
mamm010        --AGGTAACTCCG
mamm011        --AGTAAATGCGG
mamm012        --AGTAAACGCCG
mamm013        ---AGTACGCTCG
mamm014        TGTTTAAAGTTCT
mamm015        ATTTTACCCTCCC

<<<<< Preliminary (1): Map the position shifts (from reference to reconstructed) onto the Reconstructed MSA... >>>>>

($shift_lf, $shift_rf) = (0, -1) .

[ Shifts in the Reconstructed MSA ]

(position)     0    1    2    3    4    5    6    7    8    9   10   11   12

mamm001       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm002       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm003       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm004       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm005       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm006       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm007       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm008       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm009       -    1    1    1    1   -1   -1   -1   -1   -1   -1   -1   -1
mamm010       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm011       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm012       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm013       -    -    -    3    3    3    3    1    1    1    1    1    1
mamm014       0    0    0    0    0    0    0    0    0    0    0    0   -1
mamm015       0    0    0    0    0    0    0    0    0    0    0    0   -1

         

<< Original Segment of the Reference Alignment: >>

(position)     00000000001111
               01234567890123
                             
mamm001        AGTT--AAATCC-G
mamm002        AGTT--AAATCC-G
mamm003        AGTT--AAATCC-G
mamm004        AGTT--AAATCC-G
mamm005        AGTT--AAATCC-G
mamm006        AGTT--AAGTCC-G
mamm007        AGTT--AAGTCC-G
mamm008        AGTT--AAGTCC-G
mamm009        TGGT--GACTCAAG
mamm010        AGGT--AACTCC-G
mamm011        AGTA--AATGCG-G
mamm012        AGTA--AACGCC-G
mamm013        AGTA--CGCTCG--
mamm014        TGTTTAAAGTTC-T
mamm015        ATTTTACCCTCC-C

<< Original Segment of the Reconstructed Alignment: >>

(position)     0000000000111
               0123456789012
                            
mamm001        --AGTTAAATCCG
mamm002        --AGTTAAATCCG
mamm003        --AGTTAAATCCG
mamm004        --AGTTAAATCCG
mamm005        --AGTTAAATCCG
mamm006        --AGTTAAGTCCG
mamm007        --AGTTAAGTCCG
mamm008        --AGTTAAGTCCG
mamm009        -TGGTGACTCAAG
mamm010        --AGGTAACTCCG
mamm011        --AGTAAATGCGG
mamm012        --AGTAAACGCCG
mamm013        ---AGTACGCTCG
mamm014        TGTTTAAAGTTCT
mamm015        ATTTTACCCTCCC

<<<<< Preliminary (1): Map the position shifts (from reference to reconstructed) onto the Reconstructed MSA... >>>>>

($shift_lf, $shift_rf) = (0, -1) .

[ Shifts in the Reconstructed MSA ]

(position)     0    1    2    3    4    5    6    7    8    9   10   11   12

mamm001       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm002       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm003       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm004       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm005       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm006       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm007       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm008       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm009       -    1    1    1    1   -1   -1   -1   -1   -1   -1   -1   -1
mamm010       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm011       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm012       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm013       -    -    -    3    3    3    3    1    1    1    1    1    1
mamm014       0    0    0    0    0    0    0    0    0    0    0    0   -1
mamm015       0    0    0    0    0    0    0    0    0    0    0    0   -1

 
 
C. Position-shift map 

<< Original Segment of the Reference Alignment: >>

(position)     00000000001111
               01234567890123
                             
mamm001        AGTT--AAATCC-G
mamm002        AGTT--AAATCC-G
mamm003        AGTT--AAATCC-G
mamm004        AGTT--AAATCC-G
mamm005        AGTT--AAATCC-G
mamm006        AGTT--AAGTCC-G
mamm007        AGTT--AAGTCC-G
mamm008        AGTT--AAGTCC-G
mamm009        TGGT--GACTCAAG
mamm010        AGGT--AACTCC-G
mamm011        AGTA--AATGCG-G
mamm012        AGTA--AACGCC-G
mamm013        AGTA--CGCTCG--
mamm014        TGTTTAAAGTTC-T
mamm015        ATTTTACCCTCC-C

<< Original Segment of the Reconstructed Alignment: >>

(position)     0000000000111
               0123456789012
                            
mamm001        --AGTTAAATCCG
mamm002        --AGTTAAATCCG
mamm003        --AGTTAAATCCG
mamm004        --AGTTAAATCCG
mamm005        --AGTTAAATCCG
mamm006        --AGTTAAGTCCG
mamm007        --AGTTAAGTCCG
mamm008        --AGTTAAGTCCG
mamm009        -TGGTGACTCAAG
mamm010        --AGGTAACTCCG
mamm011        --AGTAAATGCGG
mamm012        --AGTAAACGCCG
mamm013        ---AGTACGCTCG
mamm014        TGTTTAAAGTTCT
mamm015        ATTTTACCCTCCC

<<<<< Preliminary (1): Map the position shifts (from reference to reconstructed) onto the Reconstructed MSA... >>>>>

($shift_lf, $shift_rf) = (0, -1) .

[ Shifts in the Reconstructed MSA ]

(position)     0    1    2    3    4    5    6    7    8    9   10   11   12

mamm001       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm002       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm003       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm004       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm005       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm006       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm007       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm008       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm009       -    1    1    1    1   -1   -1   -1   -1   -1   -1   -1   -1
mamm010       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm011       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm012       -    -    2    2    2    2    0    0    0    0    0    0   -1
mamm013       -    -    -    3    3    3    3    1    1    1    1    1    1
mamm014       0    0    0    0    0    0    0    0    0    0    0    0   -1
mamm015       0    0    0    0    0    0    0    0    0    0    0    0   -1

 

 
D. Partitioning into position-shift blocks 

 
 
Figure S2. Erroneous segment caused by three interacting errors.  
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The true MSA was simulated along the tree in Figure 2 B. The current prototype script judged 
that this erroneous segment contains complex errors. Manually, however, the errors can be 
interpreted as “shift + iCII + shift,” which were caused, roughly speaking, by the yellow 
block (with shift 2), the blue composite block (with shifts 1 and -1), and the red composite 
block (with shifts 3 and 1), respectively. And the purple block (with shift -1) is considered as 
accompanying the blue composite block. See the legend of Figure 1 for details on the 
notation. 
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A. True MSA                   B. Reconstructed MSA 

 

<< Original Segment of the Reference Alignment: >>

(position)     01234567
                       
mamm001        CA--GG-A
mamm002        CA--GG-A
mamm003        GA--GG-A
mamm004        GA--GG-A
mamm005        GA--GG-A
mamm006        CA--GG-A
mamm007        CA--GG-A
mamm008        CA--GG-A
mamm009        CA--GG-A
mamm010        CA--GG-A
mamm011        -A--GG-A
mamm012        CA--GGGA
mamm013        CA--GG-G
mamm014        CAGTAG-C
mamm015        CA--GG-C

<< Original Segment of the Reconstructed Alignment: >>

(position)     01234567
                       
mamm001        CAG--GA-
mamm002        CAG--GA-
mamm003        GAG--GA-
mamm004        GAG--GA-
mamm005        GAG--GA-
mamm006        CAG--GA-
mamm007        CAG--GA-
mamm008        CAG--GA-
mamm009        CAG--GA-
mamm010        CAG--GA-
mamm011        A----GGA
mamm012        CAG--GGA
mamm013        CAG--GG-
mamm014        CAGTAGC-
mamm015        CAG--GC-

<<<<< Preliminary (1): Map the position shifts (from reference to reconstructed) onto the Reconstructed MSA... >>>>>

[ Shifts in the Reconstructed MSA ]

(position)     0    1    2    3    4    5    6    7

mamm001       0    0   -2    -    -    0   -1    -
mamm002       0    0   -2    -    -    0   -1    -
mamm003       0    0   -2    -    -    0   -1    -
mamm004       0    0   -2    -    -    0   -1    -
mamm005       0    0   -2    -    -    0   -1    -
mamm006       0    0   -2    -    -    0   -1    -
mamm007       0    0   -2    -    -    0   -1    -
mamm008       0    0   -2    -    -    0   -1    -
mamm009       0    0   -2    -    -    0   -1    -
mamm010       0    0   -2    -    -    0   -1    -
mamm011      -1    -    -    -    -    1    1    0
mamm012       0    0   -2    -    -    0    0    0
mamm013       0    0   -2    -    -    0   -1    -
mamm014       0    0    0    0    0    0   -1    -
mamm015       0    0   -2    -    -    0   -1    -

            

<< Original Segment of the Reference Alignment: >>

(position)     01234567
                       
mamm001        CA--GG-A
mamm002        CA--GG-A
mamm003        GA--GG-A
mamm004        GA--GG-A
mamm005        GA--GG-A
mamm006        CA--GG-A
mamm007        CA--GG-A
mamm008        CA--GG-A
mamm009        CA--GG-A
mamm010        CA--GG-A
mamm011        -A--GG-A
mamm012        CA--GGGA
mamm013        CA--GG-G
mamm014        CAGTAG-C
mamm015        CA--GG-C

<< Original Segment of the Reconstructed Alignment: >>

(position)     01234567
                       
mamm001        CAG--GA-
mamm002        CAG--GA-
mamm003        GAG--GA-
mamm004        GAG--GA-
mamm005        GAG--GA-
mamm006        CAG--GA-
mamm007        CAG--GA-
mamm008        CAG--GA-
mamm009        CAG--GA-
mamm010        CAG--GA-
mamm011        A----GGA
mamm012        CAG--GGA
mamm013        CAG--GG-
mamm014        CAGTAGC-
mamm015        CAG--GC-

<<<<< Preliminary (1): Map the position shifts (from reference to reconstructed) onto the Reconstructed MSA... >>>>>

[ Shifts in the Reconstructed MSA ]

(position)     0    1    2    3    4    5    6    7

mamm001       0    0   -2    -    -    0   -1    -
mamm002       0    0   -2    -    -    0   -1    -
mamm003       0    0   -2    -    -    0   -1    -
mamm004       0    0   -2    -    -    0   -1    -
mamm005       0    0   -2    -    -    0   -1    -
mamm006       0    0   -2    -    -    0   -1    -
mamm007       0    0   -2    -    -    0   -1    -
mamm008       0    0   -2    -    -    0   -1    -
mamm009       0    0   -2    -    -    0   -1    -
mamm010       0    0   -2    -    -    0   -1    -
mamm011      -1    -    -    -    -    1    1    0
mamm012       0    0   -2    -    -    0    0    0
mamm013       0    0   -2    -    -    0   -1    -
mamm014       0    0    0    0    0    0   -1    -
mamm015       0    0   -2    -    -    0   -1    -

 
 
C. Position-shift map 

<< Original Segment of the Reference Alignment: >>

(position)     01234567
                       
mamm001        CA--GG-A
mamm002        CA--GG-A
mamm003        GA--GG-A
mamm004        GA--GG-A
mamm005        GA--GG-A
mamm006        CA--GG-A
mamm007        CA--GG-A
mamm008        CA--GG-A
mamm009        CA--GG-A
mamm010        CA--GG-A
mamm011        -A--GG-A
mamm012        CA--GGGA
mamm013        CA--GG-G
mamm014        CAGTAG-C
mamm015        CA--GG-C

<< Original Segment of the Reconstructed Alignment: >>

(position)     01234567
                       
mamm001        CAG--GA-
mamm002        CAG--GA-
mamm003        GAG--GA-
mamm004        GAG--GA-
mamm005        GAG--GA-
mamm006        CAG--GA-
mamm007        CAG--GA-
mamm008        CAG--GA-
mamm009        CAG--GA-
mamm010        CAG--GA-
mamm011        A----GGA
mamm012        CAG--GGA
mamm013        CAG--GG-
mamm014        CAGTAGC-
mamm015        CAG--GC-

<<<<< Preliminary (1): Map the position shifts (from reference to reconstructed) onto the Reconstructed MSA... >>>>>

[ Shifts in the Reconstructed MSA ]

(position)     0    1    2    3    4    5    6    7

mamm001       0    0   -2    -    -    0   -1    -
mamm002       0    0   -2    -    -    0   -1    -
mamm003       0    0   -2    -    -    0   -1    -
mamm004       0    0   -2    -    -    0   -1    -
mamm005       0    0   -2    -    -    0   -1    -
mamm006       0    0   -2    -    -    0   -1    -
mamm007       0    0   -2    -    -    0   -1    -
mamm008       0    0   -2    -    -    0   -1    -
mamm009       0    0   -2    -    -    0   -1    -
mamm010       0    0   -2    -    -    0   -1    -
mamm011      -1    -    -    -    -    1    1    0
mamm012       0    0   -2    -    -    0    0    0
mamm013       0    0   -2    -    -    0   -1    -
mamm014       0    0    0    0    0    0   -1    -
mamm015       0    0   -2    -    -    0   -1    -  

 
D. Partitioning into position-shift blocks 

 

 
Figure S3. Erroneous segment caused by four interacting errors.  



 35 

The true MSA was simulated along the tree in Figure 2 B. The current prototype script judged 
that this erroneous segment contains complex errors. Manually, however, the errors can be 
interpreted as “vertical split + shift + merge + shift,” which were caused by the green block 
(with shift -1), the blue one (with shift 1), the red one (with shift -1) and the yellow one (with 
shift -2), respectively. See the legend of Figure 1 for details on the notation.  
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A. 12 primates via MAFFT (E-INS-i)             B. 12 primates via Prank 
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C. 15 mammals via MAFFT (E-INS-i)            D. 15 mammals via Prank 
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E. 9 FE mammals via MAFFT (E-INS-i)          F. 9 FE mammals via Prank 
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Figure S4. Distribution of “separation”s between true and reconstructed MSAs.  
(A,C,E) Via MAFFT, E-INS-i (i.e., iterative). (B,D,F) Via Prank. (A,B) With 12 primates. 
(C,D) With 15 mammals. (E,F) With 9 fast-evolving (FE) mammals. The black and white 
columns are used for the numbers of block-wise steps and of site-wise steps, respectively, in 
each erroneous segment. The grey columns are used for the size of each position-shift block. 
The abscissa represents the class of the values of each “separation” measure. The ordinate 
represents the relative frequency (in percent). 
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A. 12 primates via MAFFT (E-INS-1) 
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B. 15 mammals via MAFFT (E-INS-1) 
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C. 9 FE mammals via MAFFT (E-INS-1) 
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Figure S5. Distribution of “separation”s between true and reconstructed MSAs (via 
MAFFT, E-INS-1 (i.e., progressive)).  
(A) With 12 primates. (B) With 15 mammals. (C) With 9 fast-evolving (FE) mammals. See 
the legend of Figure S4 for the notation and the convention. 
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Figure S6. Schematic illustrations of some MSA-specific error types. 
(A, B) A “vertical merge” of two deletion-induced gaps. (C, D) A “collapse of independent 
insertions (CII).” (E, F) An “incomplete collapse of independent insertions (iCII).” Each of 
panels (A), (C) and (E) depicts the true evolutionary history (on the left) and the resulting true 
MSA (on the right). Each of panels (B), (D), and (F) depicts the reconstructed MSA (on the 
right) and one of its parsimonious evolutionary interpretations (on the left). In each panel, the 
numbers 1-4 in bold face represent the aligned sequences and their corresponding external 
nodes in the tree. The most recent common ancestor of the aligned sequences is in the black 
dashed box at the root. In red dashed boxes, “+X,” “-Y,” and “Z->W” represent the insertion 
of subsequence X, deletion of subsequence Y, and the substitution from residue Z to residue 
W, respectively. 
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A. 12 primates via MAFFT (E-INS-1) 
    (X = L1 distance; Y = deletion bias)

    Y \ X 0 1 2 3 4,5 6-10 11-20 21- Total

    ...,-21 0 0 0 0 0 0 0 1 1
-20,...,-11 0 0 0 0 0 0 0 2 2
-10,...,-6 0 0 0 0 0 2 0 0 2
   -5,-4 0 0 0 0 9 0 1 0 10
    -3   0 0 0 52 0 0 1 0 53
    -2   0 0 656 13 3 0 0 0 672
    -1    0 4559 119 52 0 1 0 0 4731
     0     117173 2831 2879 34 14 0 0 0 122931
     1   0 6576 146 60 4 0 1 0 6787
     2   0 0 3723 28 4 0 0 0 3755
     3   0 0 0 2314 3 0 0 0 2317
    4,5    0 0 0 0 2291 1 0 0 2292
  6,...,10  0 0 0 0 0 867 0 0 867
 11,...,20 0 0 0 0 0 0 2 0 2
 21,... 0 0 0 0 0 0 0 0 0

   Total 117173 13966 7523 2553 2328 871 5 3 144422  

 
B. 15 mammals via MAFFT (E-INS-1) 
    (X = L1 distance; Y = deletion bias)

    Y \ X 0 1 2 3 4,5 6-10 11-20 21- Total

    ...,-21 0 0 0 0 0 0 0 113 113
-20,...,-11 0 0 0 0 0 0 0 41 41
-10,...,-6 0 0 0 0 0 59 20 30 109
   -5,-4 0 0 0 0 547 135 18 17 717
    -3   0 0 0 1346 228 121 15 4 1714
    -2   0 0 3242 108 730 280 15 5 4380
    -1    0 17925 323 2873 675 214 23 7 22040
     0     132008 748 16334 268 1679 409 21 9 151476
     1   0 24738 487 3371 840 270 36 10 29752
     2   0 0 14306 321 1203 418 17 4 16269
     3   0 0 0 13754 620 238 25 13 14650
    4,5    0 0 0 0 29222 557 32 18 29829
  6,...,10  0 0 0 0 0 30322 83 43 30448
 11,...,20 0 0 0 0 0 0 6823 45 6868
 21,... 0 0 0 0 0 0 0 517 517

   Total 132008 43411 34692 22041 35744 33023 7128 876 308923  

 
C. 9 FE mammals via MAFFT (E-INS-1) 
    (X = L1 distance; Y = deletion bias)

    Y \ X 0 1 2 3 4,5 6-10 11-20 21- Total

    ...,-21 0 0 0 0 0 0 0 59 59
-20,...,-11 0 0 0 0 0 0 0 18 18
-10,...,-6 0 0 0 0 0 19 16 26 61
   -5,-4 0 0 0 0 46 50 49 16 161
    -3   0 0 0 87 45 66 17 8 223
    -2   0 0 269 52 101 109 35 13 579
    -1    0 959 71 266 127 114 57 12 1606
     0     5765 129 1360 87 249 159 59 13 7821
     1   0 1289 131 267 166 159 74 25 2111
     2   0 0 788 112 185 186 81 21 1373
     3   0 0 0 736 169 167 94 26 1192
    4,5    0 0 0 0 1681 387 206 52 2326
  6,...,10  0 0 0 0 0 2689 537 172 3398
 11,...,20 0 0 0 0 0 0 1933 402 2335
 21,... 0 0 0 0 0 0 0 976 976

   Total 5765 2377 2619 1607 2769 4105 3158 1839 24239  

 

Figure S7. Different features of indel count misestimations by MAFFT (progressive). 

The figure shows the results via MAFFT, E-INS-1 (i.e., progressive). (A) With 12 primates. 
(B) With 15 mammals. (C) With 9 fast-evolving (FE) mammals. The panels follow the same 
notation and convention as those in Figure 6. 
 
 


