
 1 

Additional file 1 of 
“General continuous-time Markov model of sequence evolution via 
insertions/deletions: Are alignment probabilities factorable?” 

by Kiyoshi Ezawa 
 
 
 
 
 

Table of contents 

Supplementary methods      pp. 2-22 
  SM-1. Perturbation expansion of finite-time transition operator and pairwise alignment 
probability: details       pp. 2-6 
  SM-2. Factorability of pairwise alignment probability: details  pp. 6-12 
  SM-3. Factorability of probability of simplest LHS equivalence class pp. 12-13 
  SM-4. Factorability of multiple sequence alignment probability: details pp. 14-22 
Supplementary figures (with legends)     pp. 23-28 
Supplementary table (S1)      pp. 29-36 
 

Kiyoshi Ezawa
©  2016 Kiyoshi Ezawa. Open Access This file is distributed under the terms of the 

 Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), 

 which permits unrestricted use, distribution, and reproduction in any medium, 
 provided you give appropriate credit to the original author (K. Ezawa) and the source site

(https://doi.org/10.1186/s12859-016-1105-7), 

 provide a link to the Creative Commons license (above), and indicate if changes were made. �



 2 

Supplementary methods 
 
SM-1. Perturbation expansion of finite-time transition operator and pairwise alignment 
probability: details 
Here, we apply the technique of time-dependent perturbation expansion (e.g., [29,30]) to our 
evolutionary model. We first re-express our rate operator as: 
             Q̂ID (t) = Q̂0

ID (t)+ Q̂M
ID (t) .   --- Eq.(SM-1.1) 

(It corresponds to Eq.(R4.1).) Here Q̂0
ID (t) ≡ Q̂X

I (t)+ Q̂X
D (t)  describes the mutation-free 

evolution, and Q̂M
ID (t) ≡ Q̂M

I (t)+ Q̂M
D (t)  describes the single-mutation transition between 

states. From the reduced form of Eq.(R3.6), we get: 

            s Q̂0
ID (t) = − RX

ID (s, t) s ,  --- Eq.(SM-1.2) 

            with RX
ID (s, t) ≡ RX

I (s, t)+ RX
D (s, t) . --- Eq.(SM-1.3) 

(Eq.(SM-1.2) and Eq.(SM-1.3) correspond to Eq.(R4.2) and Eq.(R4.3), respectively.) Using 
the decomposition, Eq.(SM-1.1), the forward equation, Eq.(R3.19), can be rewritten as: 

           ∂
∂ "t
P̂ ID (t, "t ) − P̂ID (t, "t ) Q̂0

ID ( "t ) = P̂ID (t, "t ) Q̂M
ID ( "t ) .  --- Eq.(SM-1.4) 

Now, let P̂0
ID ( !t , !!t ) ≡ T exp dτ Q̂0

ID (τ )
!t

!!t
∫( ){ } , and multiply it from the right of each side of 

Eq.(SM-1.4). Then, exploiting the equation, ∂
∂ "t
P̂0
ID ( "t , ""t ) = − Q̂0

ID ( "t ) P̂0
ID ( "t , ""t ) , we get: 

         ∂
∂ "t

P̂ ID (t, "t ) P̂0
ID ( "t , ""t ){ } = P̂ID (t, "t ) Q̂M

ID ( "t ) P̂0
ID ( "t , ""t ) . --- Eq.(SM-1.5) 

Integrating the both sides over time !t ∈ t, !!t[ ] , using P̂ID (t, t) = P̂0
ID ( !!t , !!t ) = Î , and replacing 

!!t  with !t , we finally obtain a crucial integral equation: 

         P̂ID (t, !t ) = P̂0
ID (t, !t )+ dτ P̂ID (t, τ ) Q̂M

ID (τ ) P̂0
ID (τ , !t )

t

!t
∫ .  --- Eq.(SM-1.6) 

(It corresponds to Eq.(R4.4).) Similarly, starting from the backward equation, Eq.(R3.20), we 
can obtain another crucial integral equation: 

        P̂ID (t, !t ) = P̂0
ID (t, !t )+ dτ P̂0

IDID (t, τ ) Q̂M
ID (τ ) P̂ID (τ , !t )

t

!t
∫ .   --- Eq.(SM-1.7) 

(It corresponds to Eq.(R4.5).) These equations are equivalent to the defining differential 
equations, Eqs.(R3.19-21), because the former were directly derived from the latter. (And the 
latter can also be derived from the former.) 
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Now, to formally solve Eq.(SM-1.6), we assume that the solution can be expanded 

as: P̂ID (t, !t ) = P̂(N )
ID (t, !t )

N=0

∞

∑ , where P̂(N )
ID (t, !t )  is the collection of terms containing N  

indel operators each. Substituting this expansion into Eq.(SM-1.6) and comparing the terms 
with the same number of indel operators, we find the equations: 

    P̂(0)
ID (t, !t ) = P̂0

ID (t, !t ), P̂(N+1)
ID (t, !t ) = dτ P̂(N )

ID (t, τ ) Q̂M
ID (τ ) P̂0

ID (τ , !t )
t

!t
∫ . --- Eqs.(SM-1.8,9) 

Using Eq.(SM-1.8) as an initial condition, Eq.(SM-1.9) can be recursively solved to give: 

 P̂(N )
ID (t, !t ) =

t<τ1<<τN<τN+1= !t
∫∫ dτ1dτ N P̂0

ID (t, τ1)T Q̂M
ID (τν ) P̂0

ID (τν , τν+1)ν=1

N
∏{ }  --- Eq.(SM-1.10) 

for N ≥1 . Substituting this back into the above expansion, we finally get the formal 
perturbation expansion of the finite-time transition operator: 

P̂ID (t, !t ) = P̂0
ID (t, !t )+

t<τ1<<τN<τN+1= !t
∫∫ dτ1dτ N P̂0

ID (t, τ1)T Q̂M
ID (τ

ν
)P̂0

ID (τν , τν+1)ν=1

N
∏{ }

N=1

∞

∑

= P̂0
ID (tI , tF )+ dτ P̂0

ID (t, τ ) Q̂M
ID (τ ) P̂0

ID (τ , !t )
t

!t
∫

+ dτ1 dτ 2 P̂0
ID (t, τ1) Q̂M

ID (τ1) P̂0
ID (τ1, τ 2 )Q̂M

ID (τ 2 ) P̂0
ID (τ 2, !t )

t<τ1<τ 2< !t
∫∫

+ dτ1 dτ 2 dτ 3 P̂0
ID (t, τ1) Q̂M

ID (τ1) P̂0
ID (τ1, τ 2 )Q̂M

ID (τ 2 ) P̂0
ID (τ 2, τ 3)Q̂M

ID (τ 3) P̂0
ID (τ 3, !t )

t<τ1<τ 2<τ3< !t
∫∫∫ +.

 --- Eq.(SM-1.11) 
Note that Eq.(SM-1.11) can be derived also from Eq.(SM-1.7). Because of Eq.(SM-1.2), the 
equation: 

            s P̂0
ID (t, !t ) = exp − dτ RX

ID (s, τ )
t

!t
∫( ) s   --- Eq.(SM-1.12) 

always holds for every state s ∈ SII  and any time points (t, !t )∈ [tI , tF ]
2  (with t < !t ). Thus, 

P̂0
ID (t, !t )  describes the state retention during the time interval, [t, !t ] , with the retention 

probability exponentially decreasing at the exit rate ( RX
ID (s, τ )). Therefore, the N -th term in 

the solution, Eq.(SM-1.11), literally describes the evolutionary processes where the sequence 
underwent exactly N  mutations. In his theorems 1 and 2, Feller [35] mathematically proved 
that the conditional probability, Eq.(R3.17), obtained by substituting Eq.(SM-1.11) for 

P̂ID (t, !t )  is the solution of the defining time-differential equations of a continuous-time 
Markov model (the probability versions of Eqs.(R3.19-21)). In his paper presenting a widely 
used method for stochastic simulations, Gillespie [34] in effect gave a more intuitive 
derivation of the solution. Gillespie’s method is crucial for molecular evolutionists, because it 

gives the basis of the genuine molecular evolution simulators (e.g., [26,27,28]). Our 
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derivation of the solution, Eq.(SM-1.11), serves as a bridge between Feller’s mathematically 
rigorous proof and Gillespie’s intuitive derivation. Ours also helps understand the situation 
underlying Feller’s theorems and gives an intuitively clearer view via the neat operator 
representation of the solution. [NOTE: Besides, our derivation via perturbation expansion is 
more flexible than theirs, because our method can go beyond the separation of exit rate terms 
from transition terms (see, e.g., [31]).] 
 Now, examine the action of Eq.(SM-1.11) (with (t, !t )  replaced by (tI , tF ) ) on 

every basic state s0 ∈ SII . To simplify the argument, we symbolically rewrite the action of 

Q̂M
ID (t) ≡ Q̂M

I (t)+ Q̂M
D (t)  on a bra-vector s  as: 

            s Q̂M
ID (t) = r(M̂; s, t) s M̂

M̂∈ΜID [L(s)]
∑ .  --- Eq.(SM-1.13) 

Here, ΜID[L]≡ M̂I (x, l){ }0≤x≤L,
1≤l
 M̂D (xB, xE ){ }xB≤xE ,

xB≤L, 1≤xE

 denotes the set of insertion and 

deletion operators that can act on the sequence of length L , and r(M̂; s, t)  denotes the 

(generally time- and basic-state-dependent) rate parameter of the indel operator M̂ . Now, 
operating each term of Eq.(SM-1.13) on s0 , replacing (t, !t )  by (tI , tF ) , and applying 

Eq.(SM-1.12) and Eq.(SM-1.13) alternately, we finally get: 

s0 P̂
ID (tI , tF ) = exp − dτ RX

ID (s0, τ )tI

tF∫{ } s0

+ P [M̂1, M̂2, ..., M̂N ], [tI , tF ]( ) (s0, tI )#
$

%
&

[M̂1, M̂2 ,, M̂N ]∈ ΗID (N ; s0 )
∑ s0 M̂1

N=1

∞

∑ M̂2M̂N .
  

  --- Eq.(SM-1.14) 
Here, Η ID (N; s0 )  denotes the space of all possible histories of N  indels each that begin 
with the sequence state s0 . And 

P [M̂1, M̂2,, M̂N ], [tI , tF ]( ) (s0, tI )!
"

#
$

=
tI=τ 0<τ1<<τN<τN+1=tF

∫∫ dτ1dτ N r(M̂ν ; sν−1, τν )ν=1

N
∏( ) exp − dτ RX

ID (sν , τ )τν

τν+1∫
ν=0

N

∑
)
*
+

,
-
. sν = sν−1 M̂ν ν=1,...,N{ }

 

  --- Eq.(SM-1.15) 
(, which corresponds to Eq.(R4.7),) is the probability that an indel history [M̂1, M̂2,, M̂N ]  
occurred during the time interval [tI , tF ] , given an initial sequence state s0  at time tI . 

Eqs.(SM-1.14) supplemented by Eq.(SM-1.15) gives a considerably concrete expression of 
the solution of the defining equations, Eqs.(R3.19-21), of our genuine stochastic evolutionary 
model. (See subsection 3.1 of [32] for a more detailed explanation of Eqs.(SM-1.14,15).) 
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Now, let Η ID (N = 0; s0 ) ≡ s0, [ ]( ){ }  be the set consisting only of the history with zero indel, 

[ ] , starting with the state s0 . We can interpret exp − dτ RX
ID (s0, τ )tI

tF∫{ }  as the conditional 

probability of this zero-indel history, P [ ], [tI , tF ]( ) (s0, tI )!" #$ . Thus, Eq.(SM-1.14) can be 

rewritten more neatly as: 

s0 P̂
ID (tI , tF ) = P [M̂1, M̂2, ..., M̂N ], [tI , tF ]( ) (s0, tI )!

"
#
$

[M̂1, M̂2 ,, M̂N ]∈ ΗID (N ; s0 )
∑ s0 M̂1

N=0

∞

∑ M̂2M̂N .  

  --- Eq.(SM-1.14’) 
(It corresponds to Eq.(R4.6).) 

 Now, substitute an “ancestral” sequence state, sA ∈ SII( ) , for s0  in Eq.(SM-1.14’), 

and take the inner product between it and the ket-vector, sD , of a “descendant” sequence 

state, sD ∈ SII( ) . This procedure gives the finite-time transition probability, 

sA P̂ID (tI , tF ) s
D = P (sD, tF ) (s

A, tI )!
"

#
$ , as the summation of probabilities over all possible 

indel histories consistent with the ancestral and descendant sequence states. As exemplified 

by Eq.(R2.1), the comparison of sD  with sA  uniquely determines the pairwise sequence 
alignment (PWA) between them, with a definite homology structure [48]. Let α(sA, sD )  
denote (the homology structure of) such a PWA. Then, summing the above transition 

probability, sA P̂ID (tI , tF ) s
D , over all “equivalent” sD ’s providing α(sA, sD )  gives 

P α(sA, sD ), [tI , tF ]( ) (sA, tI )!
"

#
$ , which is the probability that α(sA, sD )  resulted from the 

evolution during the interval [tI , tF ] , given sA  at tI . By analogy to the derivation of 
Eq.(SM-1.14’), we obtain the formal expression of this probability as: 

P α(sA, sD ), [tI , tF ]( ) (sA, tI )!
"

#
$= P [M̂1, M̂2,, M̂N ], [tI , tF ]( ) (sA, tI )!

"
#
$

[M̂1, M̂2 ,, M̂N ]
∈ ΗID N ;α (sA ,sD )!

"
#
$

∑
N=

Nmin α (s
A ,sD )!

"
#
$

∞

∑ .

--- Eq.(SM-1.16) 

(It corresponds to Eq.(R4.8).) Here, Η ID N;α(sA, sD )"# $% denotes the set of all histories with 
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N  indels each that can result in α(sA, sD ) , and Nmin α(s
A, sD )!" #$  is the minimum number of 

indels required for creating the PWA. Now, introduce the symbol that represents the set of all 
global indel histories consistent with α(sA, sD ) : 

Η ID α(sA, sD )"# $%≡ Η ID N;α(sA, sD )"# $%N=Nmin [α (s
A , sD )]

∞ .   --- Eq.(SM-1.17) 

Then, Eq.(SM-1.16) can be further simplified as: 

 P α(sA, sD ), [tI , tF ]( ) (sA, tI )!
"

#
$= P [M̂1, M̂2,, M̂N ], [tI , tF ]( ) (sA, tI )!

"
#
$

[M̂1, M̂2 ,, M̂N ]
∈ ΗID α (sA ,sD )!

"
#
$

∑ .    

  --- Eq.(SM-1.16’) 
(It corresponds to Eq.(R4.9).) Eq.(SM-1.16) and Eq.(SM-1.16’) are the formal expressions of 
the occurrence probability of PWA α(sA, sD )  derived purely from the defining equations, 
Eqs.(R3.19-21), of our evolutionary model. Thus, they are the “ab initio probability” of the 
PWA. In section SM-2, we will examine its factorability. 
 
SM-2. Factorability of pairwise alignment probability: details 
Here we examine the factorability of the ab initio probability of PWA α(sA, sD ) , 

P α(sA, sD ), [tI , tF ]( ) (sA, tI )!
"

#
$  in Eq. (R4.9), given the ancestral state ( sA ) at the initial time 

( tI ). 

As mentioned in section R6 of Results and discussion, each component probability, 

P [M̂1, M̂2,, M̂N ], [tI , tF ]( ) (sA, tI )!
"

#
$  given by Eq.(R4.7), will not be factorable. This is 

because its domain of multiple-time integration is not a direct product. Thus, we will need to 
combine the probabilities of a number of indel histories. How can we do this? As mentioned 
in Section R5, each indel history, [M̂1, M̂2,, M̂N ] , belongs to a LHS equivalence class 

represented, e.g., by a LHS, M̂[k,1], ..., M̂[k,Nk ]!
"

#
${ }

k=1,...,K
, which will be abbreviated as ˆ


M  

hereafter. Let ˆ

M
!

"#
$

%&LHS
 denote this LHS equivalence class. If [M̂1, M̂2,, M̂N ]  can yield 

α(sA, sD ) , so can every element of the LHS that [M̂1, M̂2,, M̂N ]  belongs to. Thus, 

obviously, we have ˆ

M
!

"#
$

%&LHS
⊂ Η ID α(sA, sD )!" $%  for every ˆ


M
!

"#
$

%&LHS
 containing an indel history 

that can yield α(sA, sD ) . Next, if the two indel histories connect with each other through a 
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series of binary equivalence relations, Eqs.(R5.2a-d), the two histories belong to the same 

LHS equivalence class. These facts mean that the set Η ID α(sA, sD )"# $%  of all histories 

consistent with α(sA, sD )  can be decomposed into a direct sum: 

  Η ID α(sA, sD )"# $% = ˆ

M
"

#&
$

%'LHSˆ

M∈ Λ ID α (sA , sD )"

#
$
%

  . --- Eq.(SM-2.1) 

(It corresponds to Eq.(R6.5).) Here, Λ ID α(sA, sD )"# $%  is the set of all LHSs consistent with 

α(sA, sD ) . This enables us to further rewrite the PWA probability, Eq.(R4.9), as: 

  P α(sA, sD ), [tI , tF ]( ) (sA, tI )!
"

#
$ = P ˆ


M
!

"%
#

$&LHS
, [tI , tF ]

'

(
)

*

+
, (sA, tI )

!

"
%

#

$
&

ˆ

M∈ Λ ID α (sA , sD )!

"
#
$

∑  . 

 --- Eq.(SM-2.2) 
(It corresponds to Eq.(R6.6).) Here, 

P ˆ

M
!

"#
$

%&LHS
, [tI , tF ]

'

(
)

*

+
, (sA, tI )

!

"
#

$

%
& ≡ P [M̂1, M̂2,, M̂N ], [tI , tF ]( ) (sA, tI )!

"
$
%

[M̂1, M̂2 ,, M̂N ]∈ ˆ

M
!
"#

$
%&LHS

∑  

 --- Eq.(SM-2.3) 

(, which corresponds to Eq.(R6.1),) is the “total probability” of ˆ

M
!

"#
$

%&LHS
. Therefore, if 

Eq.(SM-2.3) can be factorized for every LHS ˆ

M ∈ Λ ID α(sA, sD )#$ %& , the PWA probability, 

Eq.(SM-2.2), may also become factorable. 
 To examine the factorability of Eq.(SM-2.3), it is convenient to consider the 
quotients: 

µP [M̂1, M̂2,, M̂N ], [tI , tF ]( ) (sA, tI )!
"

#
$

≡ P [M̂1, M̂2,, M̂N ], [tI , tF ]( ) (sA, tI )!
"

#
$ P [ ], [tI , tF ]( ) (sA, tI )!

"
#
$

 ,  --- Eq.(SM-2.4) 

µP M̂[k,1], ..., M̂[k,Nk ]!
"

#
$, [tI , tF ]( ) (sA, tI )!

"
#
$

≡ P M̂[k,1], ..., M̂[k,Nk ]!
"

#
$, [tI , tF ]( ) (sA, tI )!

"
#
$ P [ ], [tI , tF ]( ) (sA, tI )!

"
#
$

 ,  --- Eq.(SM-2.5) 

and 

µP
ˆ

M
!

"#
$

%&LHS
, [tI , tF ]

'

(
)

*

+
, (sA, tI )

!

"
#

$

%
& ≡ P ˆ


M
!

"#
$

%&LHS
, [tI , tF ]

'

(
)

*

+
, (sA, tI )

!

"
#

$

%
& P [ ], [tI , tF ]( ) (sA, tI )!

"
$
%  , 
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  --- Eq.(SM-2.6) 
and focus on the relationships between Eqs.(SM-2.4-6). (Eq.(SM-2.5) and Eq.(SM-2.6) 
correspond to Eq.(R6.3) and Eq.(R6.4), respectively.) This is because Eq.(SM-2.4), for 
example, can be expressed as: 

µP [M̂1, M̂2,, M̂N ], [tI , tF ]( ) (sA, tI )!
"

#
$

=
tI=τ 0<τ1<<τN<τN+1=tF

∫∫ dτ1dτ N r(M̂ν ; sν−1, τν )ν=1

N
∏( ) exp − dτ δRX

ID (sν , s
A, τ )

τν

τν+1∫
ν=0

N

∑
)
*
+

,
-
. s0=s

A ,
sν = sν−1 M̂ν ν=1,...,N

)
*
/

+/

,
-
/

./

, --- Eq.(SM-2.7) 
where δRX

ID (s, !s , τ ) ≡ RX
ID (s, τ ) − RX

ID ( !s , τ )  is an increment of the exit rate. A similar 
expression applies also to Eq.(SM-2.5). Compared with Eq.(R4.7) (or Eq.(SM-1.15)), the 
merit of Eq.(SM-2.7) is that it enables us to focus on the regions of the sequence where the 
indels took place, if the evolutionary model has desirable properties (revealed below). Thus, 

for a LHS, ˆ

M = M̂[k,1], ..., M̂[k,Nk ]!

"
#
${ }

k=1,...,K
, we will set the following ansatz: 

µP
ˆ

M
!

"#
$

%&LHS
, [tI , tF ]

'

(
)

*

+
, (sA, tI )

!

"
#

$

%
& = µP M̂[k,1], ..., M̂[k,Nk ]!

"
$
%, [tI , tF ]( ) (sA, tI )!

"
$
%

k=1

K

∏ ,   

  --- Eq.(SM-2.8) 
(, which corresponds to Eq.(R6.2),) and seek to find a set of conditions under which it indeed 
holds. To get a hint on the conditions, we will look at the both sides of Eq.(SM-2.8) more 
closely. Using Eq.(SM-2.3) and Eq.(SM-2.7), the left hand side of Eq.(SM-2.8) can be 
rewritten as: 

µP
ˆ

M
!

"#
$

%&LHS
, [tI , tF ]

'

(
)

*

+
, (sA, tI )

!

"
#

$

%
& = µP [M̂1, M̂2,, M̂N ], [tI , tF ]( ) (sA, tI )!

"
$
%

[M̂1, M̂2 ,, M̂N ]∈ ˆ

M
!
"#

$
%&LHS

∑

=
tI=τ 0<τ1<<τN<τN+1=tF

∫∫ dτ1dτ N

r(M̂ν ; sν−1, τν )ν=1

N
∏( )

× exp − dτ δRX
ID (sν , s

A, τ )
τν

τν+1∫
ν=0

N

∑
3
4
5

6
7
8

s0=s
A ,

sν = sν−1 M̂ν
for ν=1,...,N

3
4
5

6
7
8

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

[M̂1, M̂2 ,, M̂N ]∈ ˆ

M
!
"#

$
%&LHS

∑

. 

  --- Eq.(SM-2.9) 
Meanwhile, the right hand side of Eq.(SM-2.8) can be rewritten as: 
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µP M̂[k,1], ..., M̂[k,Nk ]!
"

#
$, [tI , tF ]( ) (sA, tI )!

"
#
$

k=1

K

∏

=

tI=τ (k,0)<τ (k,1)<<τ (k,Nk )<τ (k,Nk+1)=tF

∫∫ dτ (k,1)dτ (k,Nk ) r M̂[k, ik ]; sik−1, τ (k, ik )( )ik=1

Nk∏( )

× exp − dτ δRX
ID (sik , s

A, τ )
τ (k, ik )

τ (k, ik+1)∫
ik=0

Nk

∑
*
+
,

-,

.
/
,

0,
s0 = sA ,

sik = sik−1 M̂ [k, ik ]
for ik=1,...,Nk

*
+
-

.
/
0

!

"

1
1
1
1
1
1
1

#

$

2
2
2
2
2
2
2

k=1

K

∏
 . 

  --- Eq.(SM-2.10) 
As we can see, Eq.(SM-2.9) and Eq.(SM-2.10) are quite similar. Each term in either 

expression is integration over N = Nkk=1

K
∑( )  time variables. And each history, 

[M̂1, M̂2,, M̂N ] , in Eq.(SM-2.9) is nothing other than a rearrangement of the equivalents of 

the events in the LHS, ˆ

M = M̂[k,1], ..., M̂[k,Nk ]!

"
#
${ }

k=1,...,K
. Therefore, if the following two 

equations hold, the ansatz Eq.(SM-2.8), will also hold.  
(A) The equation between the domains of integration: 

          
tI=τ 0<τ1<<τN<τN+1=tF

∫∫ dτ1dτ N ...( )
[M̂1, M̂2 ,, M̂N ]∈ ˆ


M
#
$%

&
'(LHS

∑

=
tI=τ (k,0)<τ (k,1)<<τ (k,Nk )<τ (k,Nk+1)=tF

∫∫ dτ (k,1)dτ (k,Nk )
#

$
%
%

&

'
(
(k=1

K

∏ ...( )
. 

(B) The equation between the integrands (i.e., the probability densities): 

           

r(M̂ν ; sν−1, τν )i=1

N
∏( ) exp − dτ δRX

ID (sν , s
A, τ )

τν

τν+1∫
ν=0

N

∑
%
&
'

(
)
*

s0=s
A ,

sν = sν−1 M̂ν
for ν=1,...,N

%
&
'

(
)
*

=

r M̂[k, ik ]; sik−1, τ (k, ik )( )ik=1

Nk∏( )

×exp − dt δRX
ID (sik , s

A, τ )
τ (k, ik )

τ (k, ik+1)∫
ik=0

Nk

∑
%
&
,

',

(
)
,

*,
s0 = sA ,

sik = sik−1 M̂ [k, ik ]
for ik=1,...,Nk

%
&
'

(
)
*

-

.

/
/
/
/
/
/

0

1

2
2
2
2
2
2

k=1

K

∏

. 

(NOTE: Here, the equations were deliberately given in a rough manner, to aid the reader’s 
intuitive understanding. Supplementary appendix SA-2.1 in Additional file 2 gives their 
mathematically rigorous forms.) Considering that a LHS equivalence class contains all 
possible local-order-conserving rearrangements of events in the representative LHS, equation 
(A) is intuitively very plausible. However, its mathematically rigorous proof is not so 
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straightforward, and is given in Supplementary appendix SA-2.2 in Additional file 2. 
Equation (B) might be intuitively less plausible, because of the differences in δRX

ID (s, !s , τ )  
on both sides. Nevertheless, we can prove that it also holds, provided that the following set of 
conditions is satisfied. 
 
Condition (i): The rate of an indel event ( r(M̂ν ; sν−1, τν ) ) is independent of the portion of the 
sequence state ( sν−1 ) outside of the region of the local history the event ( M̂ν ) belongs to. 
Condition (ii): The increment of the exit rate due to an indel event (δRX

ID (sν , sν−1, τ ) , with 

sν = sν−1 M̂ν ) is independent of the portion of the sequence state ( sν−1 ) outside of the region 

of the local history the event ( M̂ν ) belongs to. 
 
See Supplementary appendix SA-2.1 and SA-2.3 in Additional file 2 for the derivation of the 
mathematically rigorous version of this set of conditions. (For illustration, in Supplementary 
methods SM-3, the factorability of the probability will be examined for the simplest concrete 
LHS equivalence class (given in Figure 5).) 
 Once the factorability, Eq.(SM-2.8) (or Eq.(R6.2)), is established for each LHS 
equivalence class, it is relatively easy to prove the factorability for the total quotient for the 
PWA: 

µP α(sA, sD ), [tI , tF ]( ) (sA, tI )!
"

#
$ ≡ P α(sA, sD ), [tI , tF ]( ) (sA, tI )!

"
#
$ P [ ], [tI , tF ]( ) (sA, tI )!

"
#
$

= µP
ˆ

M
!

"&
#

$'LHS
, [tI , tF ]

(

)
*

+

,
- (sA, tI )

!

"
&

#

$
'

ˆ

M∈ Λ ID α (sA , sD )!

"
#
$

∑
 , 

--- Eq.(SM-2.11) 
(which is equivalent to Eq.(R6.6) (or Eq.(SM-2.2)). Thanks to Eq.(SM-2.8) (or Eq.(R6.2)), 
each summand on the rightmost side is already factorized. One caveat, however, is that the set 
of local-history-accommodating regions could vary depending on the LHS, even if the 
resulting PWA is the same. This is because we are considering all indel histories, including 
non-parsimonious ones, that can yield the PWA, α(sA, sD ) . [NOTE: Some non-parsimonious 
indel histories contain local histories in between contiguous PASs, such as 

M̂I (x, l), M̂D (x +1, x + l)!
"

#
$ , which leave no traces of their own occurrences. They vary the set 

of regions accommodating local histories.] We will choose the maximum possible set of 
PASs in the given PWA, which separates the PWA into the finest potentially 
local-history-accommodating regions. [NOTE: Such a maximum set does not necessarily 
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consist of all PASs in the PWA. An example is given in subsection R8-3.] Let γ1, γ2, ..., γκmax  

be such regions, where the number of regions, κmax , is uniquely determined by the PWA and 

the evolutionary model. Then, we can represent any 

ˆ

M = M̂[k,1], ..., M̂[k,Nk ]!

"
#
${ }

k=1,...,K
∈ Λ ID α(sA, sD )!" #$  as a vector with κmax  components: 

ˆ

M = ˆ


M[γ1], ˆ


M[γ2 ], ..., ˆ


M[γκmax ]( ) . Here ˆ


M[γκ ]= M̂[k,1], ..., M̂[k,Nk ]!

"
#
$  if the k  th local 

history is confined in region γκ , or ˆ

M[γκ ]= [ ]  (empty) if no events in the LHS occurred in 

γκ  (Figure S1). Then, keeping µP [ ], [tI , tF ]( ) (sA, tI )!
"

#
$=1  in mind, the factorability, 

Eq.(R6.8), can be re-expressed as: 

µP
ˆ

M
!

"#
$

%&LHS
, [tI , tF ]

'

(
)

*

+
, (sA, tI )

!

"
#

$

%
& = µP

ˆ

M[γκ ], [tI , tF ]( ) (sA, tI )!

"#
$
%&

κ=1

κmax

∏  . --- Eq.(SM-2.12) 

Now, consider the space Λ ID α(sA, sD )"# $%  itself. Any two different LHSs in this space differ 

at least by a local history in some γκ . Conversely, any given vector, 

ˆ

M[γ1], ˆ


M[γ2 ], ..., ˆ


M[γκmax ]( ) , each of whose component ( ˆ


M[γκ ]) is consistent with the PWA 

restricted in the region (γκ ), defines a LHS in Λ ID α(sA, sD )"# $% . Thus, the set Λ ID α(sA, sD )"# $%  

should be represented as a “direct product”: Λ ID α(sA, sD )"# $%=
κ=1

κmax

× Λ ID γκ ;α(s
A, sD )"# $%, where 

Λ ID γκ ;α(s
A, sD )"# $%  denotes the set of local indel histories in γκ  that can give rise to the 

sub-PWA of α(sA, sD )  confined in γκ . Using this structure of Λ ID α(sA, sD )"# $%  and 

substituting Eq.(SM-2.12) for each ˆ

M ∈ Λ ID α(sA, sD )#$ %&  into Eq.(SM-2.11), we finally get 

the desired factorization of the PWA probability quotient: 

µP α(sA, sD ), [tI , tF ]( ) (sA, tI )!
"

#
$ = µP

Λ ID γκ ;α(s
A, sD )!" #$, [tI , tF ]( ) (sA, tI )!

"
#
$

κ=1

κmax

∏  .   

  --- Eq.(SM-2.13) 
Here the multiplication factor, 
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µP
Λ ID γκ ;α(s

A, sD )"# $%, [tI , tF ]( ) (sA, tI )"
#

$
%≡ µP

ˆ

M[γκ ], [tI , tF ]( ) (sA, tI )"

#'
$
%(

ˆ

M [γκ ]∈ Λ

ID γκ ;α (s
A , sD )"

#
$
%

∑ ,  

  --- Eq.(SM-2.14)    
(, which corresponds to Eq.(R6.8),) represents the total contribution to the PWA probability 
by all PWA-consistent local indel histories that can take place in γκ . Finally, the definition of 

the PWA probability quotient, Eq.(SM-2.11), transforms Eq.(SM-2.13) into the following key 
equation for the factorable ab initio PWA probability: 

   
P α(sA, sD ), [tI , tF ]( ) (sA, tI )!
"

#
$

= P [], [tI , tF ]( ) (sA, tI )!
"

#
$ µP

Λ ID γκ ;α(s
A, sD )!" #$, [tI , tF ]( ) (sA, tI )!

"
#
$

κ=1

κmax

∏ .
 --- Eq.(SM-2.15) 

(It corresponds to Eq.(R6.7).) 
 
SM-3. Factorability of probability of simplest LHS equivalence class 
To illustrate how the factorization, Eq.(R6.2) (or Eq.(SM-2.8)), can be satisfied, here we will 
examine the probability of the simplest concrete LHS equivalence class, 

M̂D (2, 4)!
"

#
$, M̂I (6, 3)!
"

#
${ }!

"
#
$LHS

 (Figure 5). In this example, the two constituent indel histories, 

M̂D (2, 4), M̂I (3, 3)!
"

#
$  and M̂I (6, 3), M̂D (2, 4)!

"
#
$ , share the ancestral state, 

sA = 1, 2, 3, 4, 5, 6, 7[ ] , and the descendant state, sD = 1, 5, 6, 8, 9, A, 7[ ] . In addition, the 

histories have their own intermediate states, sa ≡ sA M̂D (2, 4) = 1, 5, 6, 7[ ]( )  and 

sb ≡ sA M̂ I (6, 3) = 1, 2, 3, 4, 5, 6, 8, 9, A, 7[ ]( ) , respectively (Figure 5, panels a and b). 

 Using Eq.(SM-2.7), the probability quotient of the first indel history is given by: 

µP [M̂D (2, 4), M̂I (3, 3)], [tI , tF ]( ) (sA, tI )!
"

#
$

= dτ1 dτ 2
rD (2, 4; s

A,τ1) rI (3,3; sa,τ 2 )

× exp − dτ δRX
ID (sa, s

A, τ )
τ1

τ 2∫ − dτ δRX
ID (sD, sA, τ )

τ 2

tF∫{ }
!

"

(
(

#

$

)
)

tI<τ1<τ 2<tF

∫∫
 

= dτ1 dτ 2
rD (2, 4; s

A,τ1) rI (3,3; sa,τ 2 )

× exp − dτ δRX
ID (sD, sa,τ )τ 2

tF∫ − dτ δRX
ID (sa, s

A,τ )
τ1

tF∫{ }
$

%

&
&

'

(

)
)

tI<τ1<τ 2<tF

∫∫ .  --- Eq.(SM-3.1) 

To get the rightmost side, we used the identity: δRX
ID (sD, sA, τ ) =  

δRX
ID (sD, sa,τ )+ δRX

ID (sa, s
A,τ ) . Similarly, the quotient of the second indel history is: 
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µP [M̂I (6, 3), M̂D (2, 4)], [tI , tF ]( ) (sA, tI )!
"

#
$  

= dτ 2 dτ1
rI (6,3; s

A,τ 2 )rD (2, 4; sb,τ1)

× exp − dτ δRX
ID (sb, s

A, τ )
τ 2

τ1∫ − dτ δRX
ID (sD, sA, τ )

τ1

tF∫{ }
$

%

&
&

'

(

)
)

tI<τ 2<τ1<tF

∫∫  

= dτ 2 dτ1
rI (6,3; s

A,τ 2 )rD (2, 4; sb,τ1)

× exp − dτ δRX
ID (sb, s

A,τ )
τ 2

tF∫ − dτ δRX
ID (sD, sb,τ )τ1

tF∫{ }
$

%

&
&

'

(

)
)

tI<τ 2<τ1<tF

∫∫  . --- Eq.(SM-3.2) 

The total quotient of the subject LHS equivalence class is the summation of Eqs.(SM-3.1,2). 
We first notice that, modulo differences of measure zero, the union of the two domains of 
integration is a direct product: 

            
(τ1, τ 2 ) tI < τ1 < τ 2 < tF{ } (τ1, τ 2 ) tI < τ 2 < τ1 < tF{ }

= τ1 tI < τ1 < tF{ }× τ 2 tI < τ 2 < tF{ }
 . --- Eq.(SM-3.3) 

Thus, the total quotient can be factorized as: 

       

µP {[M̂D (2, 4)], [M̂I (6, 3)]}!
"

#
$LHS

, [tI , tF ]( ) (sA, tI )!
"%

#
$&

= dτ1 rD (2, 4; s
A,τ1)tI

tF∫ exp − dτ δRX
ID (sa, s

A,τ )
τ1

tF∫{ }!
"%

#
$&

× dτ 2tI

tF∫ rI (6,3; s
A,τ 2 ) exp − dτ δRX

ID (sb, s
A,τ )

τ 2

tF∫{ }!
"%

#
$&

= µP [M̂D (2, 4)], [tI , tF ]( ) (sA, tI )!
"

#
$ µP [M̂I (6, 3)], [tI , tF ]( ) (sA, tI )!

"
#
$

,  

   --- Eq.(SM-3.4) 
provided that the following equations are satisfied: 
           rD (2, 4; sb,τ1) = rD (2, 4; s

A,τ1)  ,      --- Eq.(SM-3.5a) 
            rI (3,3; sa,τ 2 ) = rI (6,3; s

A,τ 2 )  ,      --- Eq.(SM-3.5b) 
          δRX

ID (sD, sb,τ ) = δRX
ID (sa, s

A,τ )  ,      --- Eq.(SM-3.5c) 
          δRX

ID (sD, sa,τ ) = δRX
ID (sb, s

A,τ )  .      --- Eq.(SM-3.5d) 

Eq.(SM-3.5a) and Eq.(SM-3.5b) correspond to condition (i) in section R6 of Results and 
discussion. And, owing to the above definitions of sa  and sb , and to the equations 

sD = sa M̂ I (3, 3) = sb M̂D (2, 4) , we see that Eq.(SM-3.5c) and Eq.(SM-3.5d) correspond to 

condition (ii) in section R6. Eq.(SM-3.4) is a concrete instance of the factorability, Eq.(R6.2) 

(or Eq.(SM-2.8)), when ˆ

M = M̂D (2, 4)!

"
#
$, M̂I (6, 3)!
"

#
${ } . If you will, the factorability for more 

complex LHS equivalence classes could also be demonstrated concretely, although the 
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procedure becomes more cumbersome and lengthy. In any case, the proof can be generalized, 
as is fully described in Supplementary appendix SA-2 in Additional file 2. 
 
SM-4. Factorability of multiple sequence alignment probability: details 
As in section R7 of Results and discussion, here we formally calculate the ab initio 
probability of a MSA given a rooted phylogenetic tree, T = {n}T , {b}T( ) , where {n}T  is the 

set of all nodes of the tree, and {b}T  is the set of all branches of the tree. We decompose the 

set of all nodes as: {n}T =Ν
IN (T )+ΝX (T ) , where Ν IN (T )  is the set of all internal nodes 

and ΝX (T ) = n1, ..., nNX{ }  is the set of all external nodes. (The N X ≡ ΝX (T )  is the number 

of external nodes.) The root node plays an important role and will be denoted as nRoot (T ) , or 
simply nRoot . Because the tree is rooted, each branch b  is directed. Thus, let nA (b)  denote 
the “ancestral node” on the upstream end of b , and let nD (b)  denote the “descendant node” 
on the downstream end of b . Let s(n)∈ SII  be a sequence state at the node n ∈ {n}T . 

Especially, let sA (b) ≡ s nA (b)( )∈ SII  denote a sequence state at nA (b)  and let 

sD (b) ≡ s nD (b)( )∈ SII  denote a sequence state at nD (b) . Finally, as mentioned in 

Background, we suppose that the branch lengths, b b∈ {b}T{ } , and the indel model 

parameters, ΘID (b){ }T ≡ ΘID (b) b∈ {b}T{ } , are all given. Note that the model parameters 

ΘID (b)  could vary depending on the branch, at least theoretically.  

 First, we extend the ideas proposed by [13,14,36] to each indel history along a tree, 
by regarding the indel history along a branch as a map (or a transformation) from the ancestral 
sequence state to the descendant sequence state, as follows. An indel history along a tree 
consists of indel histories along all branches of the tree that are interdependent, in the sense 
that the indel process of a branch b  determines a sequence state sD (b)  at its descendant 
node nD (b) , on which the indel processes along its downstream branches depend. Thus, an 
indel history on a given root sequence state sRoot = s(nRoot )∈ SII  automatically determines 

the sequence states at all nodes, s(n)∈ SII for ∀n ∈ {n}T{ } . Let Η ID (s0 ) ≡ Η ID (N; s0 )N=0

∞  

(with Η ID (N; s0 )  defined below Eq.(R4.6)) be the set of all indel histories along a time axis 

(or a branch) starting with state s0 . Then, each indel history, ˆ

M (b){ }

T
, along tree T  and 
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starting with sRoot  can be specifically expressed as: 

 
ˆ

M (b) = M̂ 1(b), ..., M̂ N (b) (b)!

"
#
$∈
Η ID sA (b)( ) and

sD (b) = sA (b) M̂ 1(b)M̂ N (b) (b) for ∀b∈ {b}T

(

)
*

+*

s nRoot (T )( ) = sRoot,
-
*

.*
. --- Eq.(SM-4.1) 

(It corresponds to Eq.(R7.1).) Here, the symbol, M̂ν (b) , denotes the ν  th event in the indel 
history along branch b∈ {b}T . The probability of the indel history, Eq.(SM-4.1), can be 

easily calculated. First, we already gave the conditional probability of an indel history during 
the time interval [tI , tF ] , by Eq.(R4.7). Because we can correspond each branch b∈ {b}T  to 

a time interval t(nA (b)), t(nD (b))!" #$  (with t(nD (b))− t(nA (b)) = b ), the probability of an 

indel history, ˆ

M (b) = M̂ 1(b), ..., M̂ N (b) (b)!

"
#
$∈
Η ID sA (b)( ) , along a branch b∈ {b}T  is given 

by: 

 
P ˆ

M (b), b( ) (sA (b), nA (b))!

"#
$
%&

≡ P M̂1(b),, M̂N (b) (b)!
"

$
%, t(n

A (b)), t(nD (b))!" $%( ) sA (b), t(nA (b))( )!
"

$
% ΘID (b)

 . ---Eq.(SM-4.2)    

(It corresponds to Eq.(R7.3).) Here we explicitly showed the branch-dependence of the model 
parameters. Using Eq.(SM-4.2) as a building block, the probability of the indel history along 

T , ˆ

M (b){ }

T
, specified by Eq.(SM-4.1) (or Eq.(R7.1)), is given as: 

P ˆ

M (b){ }

T
sRoot, nRoot( )!

"#
$
%&
= P ˆ


M (b), b( ) (sA (b), nA (b))!

"#
$
%&b∈{b}T

∏
)

*

+
+

,

-

.

. s(nRoot )=sRoot ,
sD (b) = sA (b) M̂1(b)M̂N (b ) (b)
for ∀b∈{b}T

.  

   --- Eq.(SM-4.3) 
(It corresponds to Eq.(R7.2).) 

In this way, we can calculate the probability of any indel history ˆ

M (b){ }

T
along tree 

T  starting with a given root state, sRoot ∈ SII . 
 Now, an important fact is that an indel history, along a tree starting with a root 
sequence state, uniquely yields a MSA, α[s1, s2,..., sNX ] , among the sequences at the external 

nodes, si = s(ni )∈ SII  ( ni ∈ ΝX (T ) ). [NOTE: Remember that the term “MSA” here means 

its homology structure.] However, the converse is not true. That is, a given MSA, 
α[s1, s2,..., sNX ] , could result from a large number of alternative indel histories along a tree, 

even when starting with a given sequence state at the root. Moreover, there could be infinitely 
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many root states consistent with a given MSA. Here, let sRoot, ˆ

M (b){ }

T

!
"
#

$
%
&  be a pair of a root 

state and an indel history along T  starting with the state. And let Ψ ID α[s1, s2,..., sNX ];T"# $%  

be the set of all such pairs defined on T  consistent with α[s1, s2,..., sNX ] . Then, as the 

probability of a given PWA is expressed as Eq.(R4.9) supplemented with Eq.(R4.7), the 
probability of a given MSA under a given model setting (including T ) should be expressed 
as: 

P α[s1, s2,..., sNX ] T!" #$= P sRoot, nRoot( )!
"

#
$P ˆ


M (b){ }

T
sRoot, nRoot( )!

"%
#
$&

sRoot , ˆ

M (b){ }

T

'
(
)

*
+
,

∈ Ψ ID α[s1,s2 ,...,sNX ];T
!
"

#
$

∑ , 

   --- Eq.(SM-4.4) 
which (, corresponding to Eq.(R7.4),) is supplemented with Eq.(SM-4.3) (or Eq.(R7.2)). Here, 

P sRoot, nRoot( )!
"

#
$  is the probability of state sRoot  at the root node (nRoot ). (It may be 

interpreted as the prior in a Bayesian formalism.) If you will, Eq.(SM-4.4) supplemented with 
Eq.(SM-4.3) could be interpreted as the “perturbation expansion” of an ab initio MSA 
probability. To make this formal expansion formula more tractable, we consider the ancestral 

sequence states at all internal nodes, and let s(n){ }ΝIN ≡ s(n)∈ S n ∈ Ν IN (T ){ }  denote a set 

of such ancestral states (or, more precisely, its equivalence class in the sense of endnote (h) 
(or 8)). To be consistent with a given MSA, the ancestral states must satisfy the “phylogenetic 
correctness” condition in each MSA column [37,38]. [NOTE: The “phylogenetic correctness” 
condition guarantees that the sites aligned in a MSA column should share an ancestry. The 
condition could be rephrased as: “if a site corresponding to the column is present at two 
points in the phylogenetic tree, the site must also be present all along the shortest path 
connecting the two points.”] As long as the condition is fulfilled in all MSA columns, 

however, any set of states must be allowed. So, let Σ α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T$
%

&
'  be 

the set of all s(n){ }ΝIN ’s consistent with α[s1, s2,..., sNX ]  (and tree T ). Then, the 

aforementioned set, Ψ ID α[s1, s2,..., sNX ];T"# $% , can be uniquely decomposed into the following 

direct sum: 
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Ψ ID α[s1, s2,..., sNX ];T"# $%= Ψ ID α[s1, s2,..., sNX ]; s(n){ }ΝIN ;T"# $%
s(n){ }ΝIN

∈ Σ α[s1,s2 ,...,sNX ]; n∈Ν
IN (T ){ };T"

#
$
%

  .  

  --- Eq.(SM-4.5) 

Here, Ψ ID α[s1, s2,..., sNX ]; s(n){ }ΝIN ;T#$ %&  denotes the set of indel histories along T  

consistent with both the MSA (α[s1, s2,..., sNX ] ) and the ancestral sequence states ( s(n){ }ΝIN ). 

Substituting Eq.(SM-4.5) into Eq.(SM-4.4), we have: 

P α[s1, s2,..., sNX ] T!" #$= P α[s1, s2,..., sNX ]; s(n){ }
Ν
IN T!" #$

s(n){ }ΝIN
∈ Σ α[s1,s2 ,...,sNX ]; n∈Ν

IN (T ){ };T!
"

#
$

∑  .   

  --- Eq.(SM-4.6)    
(It corresponds to Eq.(R7.5).) Here, 

P α[s1, s2,..., sNX ]; s(n){ }ΝIN T"# $%

≡ P sRoot, nRoot( )"
#

$
%P ˆ


M (b){ }

T
sRoot, nRoot( )"

#'
$
%(

sRoot , ˆ

M (b){ }

T

)
*
+

,
-
.

∈Ψ ID α[s1,s2 ,...,sNX ]; s(n){ }ΝIN ;T"
#

$
%

∑  

  --- Eq.(SM-4.7) 
is the probability of simultaneously getting α[s1, s2,..., sNX ]  and s(n){ }ΝIN . Thus, all terms in 

Eq.(SM-4.7) share the same homology structure among sequence states at all nodes. 
Especially, the sequence states at internal nodes have homology structures (with states at 
other nodes) fixed for respective nodes. And each history consists of indel histories along 
branches consistent with each other (as in Eq.(SM-4.1) (or Eq.(R7.1))). This, in conjunction 
with the fact that the states at the internal nodes having node-fixed homology structures could 

be used as “anchors,” the history component of Ψ ID α[s1, s2,..., sNX ]; s(n){ }ΝIN ;T#$ %&  could be 

vertically decomposed into a direct product: 

 Ψ ID α[s1, s2,..., sNX ]; s(n){ }ΝIN ;T#$ %& = sRoot,
b∈ b{ }T
× Η ID α sA (b), sD (b)( )#

$
%
&

*

+
,,

-

.
// .  --- Eq.(SM-4.8) 

Here, sA (b)  and sD (b)  for each branch are proper elements in the set of (the equivalence 

classes of) states, si{ }i=1,...,NX ∪ s(n){ }ΝIN . (All pairs, sRoot, ˆ

M (b){ }

T

!
"
#

$
%
& ’s, share the root state.) 

Substituting Eq.(SM-4.3) and Eq.(SM-4.8) into Eq.(SM-4.7), and lumping together the terms 
along each branch using Eq.(R4.9), we finally get: 
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P α[s1, s2,..., sNX ]; s(n){ }ΝIN T"# $%

= P sRoot, nRoot( )"
#

$
% P (α(sA (b), sD (b)), b) (sA (b), nA (b))"

#
$
%

b∈{b}T

∏  .    --- Eq.(SM-4.9) 

(It corresponds to Eq.(R7.6).) Here,  

  
P (α(sA (b), sD (b)), b) (sA (b), nA (b))!
"

#
$

≡ P α(sA (b), sD (b)), t nA (b)( ), t nD (b)( )!
"

#
$( ) sA (b), t nA (b)( )( )!

"&
#
$' ΘID (b)

 --- Eq.(SM-4.10) 

(, which corresponds to Eq.(R7.7),) is the probability of the ancestor-descendant PWA along 
branch b . This Eq.(SM-4.9) is basically the expression proposed in [13,14], and we 
demonstrated in effect that their proposal also holds even with a genuine stochastic 
evolutionary model. Usually, Eq.(SM-4.6) supplemented with Eq.(SM-4.9) is much more 
tractable than Eq.(SM-4.4) supplemented with Eq.(SM-4.3), because of the two reasons. (1) 
Usually, it is not the indel history (along the tree) but (the homology structure of) the set of 
ancestral sequence states that is inferred from a given MSA. (2) The probability of each indel 
history along the tree (Eq.(SM-4.3)) is not factorable in general, whereas Eq.(SM-4.9) is a 
product of PWA probabilities, each of which should be factorable if the conditions (i) and (ii) 
in section R6 are satisfied. 
 Now, we seek to factorize the ab initio MSA probability into a form somewhat 
similar to Eq.(R6.7) for the ab initio PWA probability. In subsection 4.2 of [32], we did so 
using the history-based expansion of the MSA probability (i.e., Eq.(SM-4.4) supplemented 
with Eq.(SM-4.3)). Here, we will use the ancestral-state-based expansion (i.e., Eq.(SM-4.6) 
supplemented with Eq.(SM-4.9)), as was only briefly sketched at the bottom of subsection 4.2 
of [32]. In a MSA, gapless columns play almost the same role as PASs in a PWA. Because of 
the aforementioned “phylogenetic correctness” condition, a gapless column indicates that the 
site in question existed all across the phylogenetic tree, and thus that no indel event hit or 
pierce the site. Therefore, gapless columns will partition a MSA into regions each of which 
accommodates a local subset of every global history. Analogously to the argument above 
Eq.(SM-2.12), let C1, C2, ..., CΚmax

 be the maximum possible set of such regions determined 
by a given MSA (α[s1, s2,..., sNX ] ) and a model setting (including tree T ). (As argued there, 

all gapless columns are not necessarily needed to delimit the regions.) Meanwhile, if the 
conditions (i) and (ii) in section R6 are satisfied, each factor in the product in Eq.(SM-4.9) 
can be factorized as in Eq.(R6.7): 
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P (α(sA (b), sD (b)), b) (sA (b), nA (b))!
"

#
$

= P [], b( ) (sA (b), nA (b))!
"

#
$ µP

Λ ID γκb (b);α(s
A (b), sD (b))!" #$, b( ) (sA (b), nA (b))!

"
#
$

κb=1

κmax (b )

∏
 .  

  --- Eq.(SM-4.11) 
Here we used the notation that helps easily remind the dependence on the branch ( b ). 

Especially, γκb (b){ }
κb=1,..., κmax (b)

 denotes the maximum set of regions accommodating local 

indel histories along b  consistent with the PWA, α(sA (b), sD (b))  (Figure S2). Because the 

set of gapless columns delimiting CΚ{ }Κ=1,...,Κmax  defines a subset of PASs in α(sA (b), sD (b))  

delimiting γκb (b){ }
κb=1,..., κmax (b)

, each CΚ  should encompass at least one γκb (b)  (Figure S2). 

Thus, Eq.(SM-4.9) supplemented with Eq.(SM-4.11) could be rearranged as: 

P α[s1, s2,..., sNX ]; s(n){ }ΝIN T"# $%

= P sRoot, nRoot( )"
#

$
% P [], b( ) (sA (b), nA (b))"

#
$
%

b∈{b}T

∏
(

)
**

+

,
-- ΜP α[s1, s2,..., sNX ]; s(n){ }ΝIN ;CΚ T"# $%

Κ=1

Κmax

∏
(

)
*

+

,
-

. 

  --- Eq.(SM-4.12) 
Here, the “raw” multiplication factor contributed from the region, CΚ , is given by: 

 

ΜP α[s1, s2,..., sNX ]; s(n){ }ΝIN ;CΚ T$% &'

≡ µP
Λ ID γκb (b);α(s

A (b), sD (b))$% &', b( ) (sA (b), nA (b))$
%

&
'

γκb (b)⊆CΚ

∏
,
-
.

/.

0
1
.

2.b∈ b{ }T

∏
. --- Eq.(SM-4.13) 

To factorize the total probability of α[s1, s2,..., sNX ] , Eq.(SM-4.6) (or Eq.(R7.5)), we need to 

consider multiple sets of ancestral states. For this purpose, we introduce a “reference” root 
sequence state, s0

Root . It can be anything, as long as it is the state at the root consistent with 
α[s1, s2,..., sNX ] . Technically, one good candidate for s0

Root  would be a root state obtained by 

applying the Dollo parsimony principle [39] to each column of the MSA, because it is 
arguably the most readily available state that satisfies the phylogenetic correctness condition 
along the entire MSA. Given a reference, s0

Root , each ancestral state sA (b)  should differ 
from s0

Root  only within some CΚ ’s. Moreover, the condition (ii) in section R6 guarantees 
that the impacts of their differences within separate CΚ ’s on the exit rate should be 

independent of each other. Thus, we have: 
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RX
ID (sA (b), t) = RX

ID (s0
Root, t)+ δRX

ID (sA (b), s0
Root, t)[CΚ ]Κ=1

Κmax∑ ,  ---Eq.(SM-4.14) 

where δRX
ID (sA (b), s0

Root, t)[CΚ ]  is the increment of the exit rate due to the difference 
between sA (b)  and s0

Root  within the region CΚ . Remembering that 

P [], b( ) (sA (b), nA (b))!
"

#
$= exp − dτ RX

ID (sA (b), τ )
t nA (b)( )
t nD (b)( )∫

'
(
)

*
+
, , the product in the middle of the 

right hand side of Eq.(SM-4.12) can be rewritten as: 

P [], b( ) (sA (b), nA (b))!
"

#
$

b∈{b}T

∏

= P [ ]{ }T s0
Root, nRoot( )!

"
#
$ exp − dτ δRX

ID (sA (b), s0
Root, τ )[CΚ ]t nA (b)( )

t nD (b)( )∫
b∈{b}T

∑
+

,
--

.

/
00

1
2
3

43

5
6
3

73Κ=1

Κmax

∏
 .  

  --- Eq.(SM-4.15) 

Here, P [ ]{ }T s0
Root, nRoot( )!

"
#
$= exp − dτ RX

ID (s0
Root, τ )

t nA (b)( )
t nD (b)( )∫b∈ b{ }T

∑)*+
,
-
.  is the probability that 

the sequence underwent no indel all across the tree (T ), conditioned on that the state was 
s0
Root  at the root. The remaining factor is the (prior) probability of the state at the root, 

P sRoot, nRoot( )!
"

#
$ . We will impose a third condition: 

Condition (iii): 

   P sRoot, nRoot( )!
"

#
$= P s0

Root, nRoot( )!
"

#
$ µP sRoot, s0

Root, nRoot;CΚ
!" #$

Κ=1

Κmax

∏ . --- Eq.(SM-4.16) 

(It corresponds to Eq.(R7.8).) Here the multiplication factor, µP sRoot, s0
Root, nRoot;CΚ

"# $% , 

represents the change in the state probability at the root due to the difference between sRoot  

and s0
Root  within CΚ . This equation holds, e.g., when P sRoot, nRoot( )!

"
#
$  is a geometric 

distribution or a uniform distribution of the root sequence length, L(sRoot ) . [NOTE: HMMs 
commonly use geometric distributions of sequence lengths. The uniform distribution may be a 
good approximation if we can assume that the ancestral sequence was sampled randomly 
from a chromosome of length LC . In this case, the distribution of the sequence length 
L(s) (<< LC )  would be proportional to 1− (L(s)−1) / LC( ) ≈1 .] Using Eqs.(SM-4.15,16), 

Eq.(SM-4.12) can be rewritten as: 
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P α[s1, s2,..., sNX ]; s(n){ }ΝIN T"# $%

= P s0
Root, nRoot( )"

#
$
%P [ ]{ }T s0

Root, nRoot( )"
#

$
%


ΜP α[s1, s2,..., sNX ]; s(n){ }ΝIN ; s0

Root;CΚ T"# $%
Κ=1

Κmax

∏
)

*
+

,

-
.

. 

  --- Eq.(SM-4.17) 
Here, the “augmented” multiplication factor contributed from CΚ  is defined as: 

ΜP α[s1, s2,..., sNX ]; s(n){ }ΝIN ; s0

Root;CΚ T$% &'

≡ΜP α[s1, s2,..., sNX ]; s(n){ }ΝIN ;CΚ T$% &' µP s nRoot( ), s0Root, nRoot;CΚ
$
%

&
'

× exp − dτ δRX
ID (sA (b), s0

Root, τ )[CΚ ]t nA (b)( )
t nD (b)( )∫

b∈{b}T

∑
.

/
00

1

2
33

 . --- Eq.(SM-4.18) 

Substituting Eq.(SM-4.17) into Eq.(SM-4.6) (or Eq.(R7.5)), we are just a step short of the 
complete factorization. The final step is the “decomposition” of the space, 

Σ α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T$
%

&
' , each of whose elements is a set of MSA-consistent 

ancestral states at all internal nodes. For this purpose, we use s0
Root  once again, and define 

ΔΣ s0
Root;α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T%

&
'
(  as the space of deviations of MSA-consistent 

internal states from s0
Root . As argued above, the deviations of ancestral states from s0

Root  
come only from CΚ ’s (with Κ =1,...,Κmax ), and deviations from different CΚ ’s behave 

independently from each other (thanks to the delimiting gapless columns and conditions (i) 
and (ii)). Thus, we get the direct-product structure: 

   
ΔΣ s0

Root;α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T%
&

'
(

=
Κ=1

Κmax

×ΔΣ CΚ; s0
Root;α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T%

&
'
(

 . --- Eq.(SM-4.19) 

Here, ΔΣ CΚ; s0
Root;α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T&

'
(
)  is the space of deviations within CΚ . 

In Eq.(SM-4.17), all the absolute dependences on s0
Root  were factored out of the product over 

Κ . Thus, in Eq.(SM-4.6) (or Eq.(R7.5)), the summation over 

Σ α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T$
%

&
'  is reduced to the summation over 

ΔΣ s0
Root;α[s1, s2,..., sNX ]; n ∈ Ν IN (T ){ };T%

&
'
( . Exploiting Eq.(SM-4.17) and Eq.(SM-4.19), 

Eq.(SM-4.6) can be re-expressed into the final factorized form: 
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P α[s1, s2,..., sNX ] T!" #$= P0 s0
Root T!" #$

ΜP α[s1, s2,..., sNX ]; s0
Root;CΚ T!" #$

Κ=1

Κmax

∏  . --- Eq.(SM-4.20) 

(It corresponds to Eq.(R7.9).) Here,  

   P0 s0
Root T!" #$≡ P s0

Root, nRoot( )!
"

#
$P [ ]{ }T s0

Root, nRoot( )!
"

#
$ . --- Eq.(SM-4.21) 

(, which corresponds to Eq.(R7.10),) is the probability of having a sequence state s0
Root  that 

has been intact all across tree T , and 
ΜP α[s1, s2,..., sNX ]; s0

Root;CΚ T#$ %&

≡

ΜP α[s1, s2,..., sNX ]; s(n){ }ΝIN ; s0

Root;CΚ T#$ %&
s(n) − s0

Root{ }
ΝIN

[CΚ ]

∈ ΔΣ CΚ ; s0
Root ;α[s1,s2 ,...,sNX ]; n∈Ν

IN (T ){ };T#
$

%
&

∑ . ---Eq.(SM-4.22) 

is the multiplication factor contributed from all MSA-consistent local indel histories (along 

T ) confined in CΚ . [NOTE: 
ΜP α[s1, s2,..., sNX ]; s0

Root;CΚ T#$ %&  given in Eq.(SM-4.22) 

should be equivalent to 
ΜP
ΛΨ
ID CΚ;α[s1, s2,..., sNX ];T%& '( T%

&
'
(  given in Eq.(4.2.9c) of [32], 

although the two expressions may appear quite different at first glance.] In Eq.(SM-4.22), we 

let s(n) − s0
Root{ }

ΝIN [CΚ ]  denote the portion of the deviation of s(n){ }ΝIN  from s0
Root  

confined in CΚ . 
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 Supplementary figures (with legends) 
 

I�� 1� 2� 3� 4� 5� 6� 7� 8� -� -� -� 9�

1�� 1� 2� 3� -� 5� 6� 7� 8� -� -� -� 9�

2�� 1� 2� 3� -� 5� 6� 7� 8� A� B� -� 9�

3�� 1� 2� -� -� -� 6� 7� 8� A� B� -� 9�

4�� 1� 2� -� -� -� 6� 7� C� 8� A� B� -� 9�

5�� 1� 2� -� -� -� 6� 7� C� 8� A� B� D� 9�

F�� 1� 2� -� -� -� 6� 7� 8� A� B� D� 9�

a  Global indel history�

sI

s1 = sI M̂D (4, 4)

s2 = s1 M̂I (7, 2)

s3 = s2 M̂D (3, 4)

sF = s5 M̂D (5, 5)

b  Resulting MSA (in SII) and local regions �

s4 = s3 M̂I (4,1)

s5 = s4 M̂I (8,1)

�1 �2 �3 �4 �5 �6 �7

c  LHS(original representation):�

ˆ
��
M = ˆ

�
M[k]� ˆ

�
M[k,1], ..., ˆ

�
M[k,Nk ]

�
��

�
��{ }

k=1,2,3
with�

ˆ
�
M[1]= M̂D (4, 4), M̂D (3, 4)�

�
�
�=

ˆ �MD (4, 4), ˆ �MD (3, 4)�
�

�
�,

ˆ
�
M[2]= M̂I (7,1), M̂D (8,8)�

�
�
�=

ˆ �MI (4,1), ˆ �MD (5, 5)�
�

�
�,

ˆ
�
M[3]= M̂I (8, 2), M̂I (10,1)�

�
�
�=

ˆ �MI (7, 2), ˆ �MI (8,1)�
�

�
�.

d  LHS (vector representation):�
ˆ
��
M = ˆ

�
M[�1], ˆ

�
M[�2 ], ..., ˆ

�
M[�7 ]( )

with�
ˆ
�
M[�1]= ˆ

�
M[�2 ]= ˆ

�
M[�4 ]= ˆ

�
M[�7 ]= [ ],

ˆ
�
M[�3]= ˆ

�
M[1], ˆ

�
M[�5 ]= ˆ

�
M[2], ˆ

�
M[�6 ]= ˆ

�
M[3].

 
 
Figure S1. “Vector” representation of example LHS along time interval.  
a An example global indel history, consisting of six indel events and seven resulting sequence 
states (including the initial state sI ). b The resulting MSA among the sequence states that the 

indel history went through. The boldface letters in the leftmost column indicate the sequence 
states in the global history (panel a). The 1-9,A-D in the cells are the ancestry indices of the 
sites. The cells shaded in magenta and red represent the sites to be deleted. Those shaded in 
cyan and blue represent the inserted sites. And those shaded in yellow represent the inserted 
sites to be deleted. Below the MSA, the bottom curly brackets indicate the regions γκ  
(κ = 3,5, 6  in this example) that actually accommodate local indel histories. And the yellow 
wedges indicate the regions γκ  (κ =1,2, 4, 7  in this example) that can potentially 
accommodate local indel histories, but that actually do not. In this example, K = 3 , 
N1 = N2 = N3 = 2 , and κmax = 7 . c The original representation of the local history set (LHS). 
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In each defining equation for ˆ

M[k]  ( k =1,2,3 ), the expression in the middle is the local 

history represented by its action on the initial state ( sI ). And on the right-most side is the 

representation by the actual indel events in the global history (in panel a), where the prime 
indicates that each defining event is equivalent to but not necessarily equal to the 
corresponding event in the global history. d The vector representation of the LHS. The “[ ] ” 

denotes an empty local history, in which no indel event took place. The figure was adapted 
from Figure 10 of [32]. 
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a  Global indel history�

1

2

3

4

5

6

R

b1��

b2��

b3��

b4��

b5��

b6��

R�� 1� 2� 3� 4� 5� -� -� 6� 7� 8� 9� A� -� B� C�

5�� 1� 2� 3� 4� 5� -� E� 6� 7� 8� 9� A� -� B� C�

6�� 1� 2� 3� 4� 5� -� -� 6� 7� 8� 9� A� D� B� C�

1�� 1� 2� 3� -� -� -� E� 6� 7� 8� 9� -� -� B� C�

2�� 1� 2� 3� 4� 5� F� E� 6� 7� 8� 9� A� -� B� C�

3�� 1� 2� 3� 4� 5� -� -� 6� 7� 8� 9� A� D� B� C�

4�� 1� 2� 3� -� 5� -� -� 6� 7� 8� 9� A� D� B� C�

C1 C2 C3 C4 C6 C7

b  Resulting MSA (in SII) and local regions �

C5 C8 C9 C10ˆ
�
M (b5) = M̂I (5,1)�

�
�
�,

ˆ
�
M (b1) = M̂D (11,11), M̂D (4, 5)�

�
�
�,

ˆ
�
M (b2) = M̂I (5,1)�

�
�
�,

ˆ
�
M (b6) = M̂I (10,1)�

�
�
�,

ˆ
�
M (b3) = [ ] ,
ˆ
�
M (b4) = M̂D (4, 4)�

�
�
�.

c  LHSs along branches (vector representation):�

R�� 1� 2� 3� 4� 5� -� 6� 7� 8� 9� A� B� C�

5�� 1� 2� 3� 4� 5� E� 6� 7� 8� 9� A� B� C�

5�� 1� 2� 3� 4� 5� E� 6� 7� 8� 9� A� B� C�

1�� 1� 2� 3� -� -� E� 6� 7� 8� 9� -� B� C�

�1(b5) �2 (b5) �4 (b5) �6 (b5)�3(b5) �5(b5) �7(b5)�8(b5)�9 (b5)�10 (b5)�11(b5)�12 (b5)�13(b5)

�1(b1) �2 (b1) �3(b1) �4 (b1) �5(b1) �6 (b1) �7(b1) �8(b1) �9 (b1) �10 (b1) �11(b1)

ˆ
��
M (b5) = ˆ

�
M[�1(b5)], ..., ˆ

�
M[�13(b5)]( ) = [], [], [], [], [], M̂I (5,1)�

�
�
�, [], [], [], [], [], [], []( ) .

ˆ
��
M (b1) = ˆ

�
M[�1(b1)], ..., ˆ

�
M[�11(b1)]( ) = [], [], [], M̂D (4, 5)�

�
�
�, [], [], [], [], M̂D (11,11)�

�
�
�, [], []( ) .

 

Similarly,�

ˆ
��
M (b6) = ˆ

�
M[�1(b6)], ..., ˆ

�
M[�13(b6)]( ) = [], [], [], [], [], [], [], [], [], [], M̂I (10,1)�

�
�
�, [], []( ) ,

ˆ
��
M (b2) = ˆ

�
M[�1(b2)], ..., ˆ

�
M[�14 (b2)]( ) = [], [], [], [], [], M̂I (5,1)�

�
�
�, [], [], [], [], [], [], [], []( ) ,

ˆ
��
M (b3) = ˆ

�
M[�1(b3)], ..., ˆ

�
M[�14 (b3)]( ) = [], [], [], [], [], [], [], [], [], [], [], [], [], []( ) ,

ˆ
��
M (b4) = ˆ

�
M[�1(b4)], ..., ˆ

�
M[�13(b4)]( ) = [], [], [], M̂D (4, 4)�

�
�
�, [], [], [], [], [], [], [], [], []( ) .

d  LHS along the tree (vector representation):�

ˆ
��
M (b){ }

T

= ˆ
��
M (b){ }

T

C1[ ], ..., ˆ
��
M (b){ }

T

C10[ ]
�

�
�

�

�
� ,

with�

ˆ
��
M (b){ }

T

C�[ ] = { } for � =1,2,3, 5, 6, 7, 9,10 ,

ˆ
��
M (b){ }

T

C4[ ] = ˆ
�
M[�6 (b5)]= M̂I (5,1)�

�
�
�, ˆ
�
M[�4 (b1)]= M̂D (4, 5)�

�
�
�, ˆ
�
M[�6 (b2)]= M̂I (5,1)�

�
�
�, ˆ
�
M[�4 (b4)]= M̂D (4, 4)�

�
�
�{ } ,

ˆ
��
M (b){ }

T

C8[ ] = ˆ
�
M[�11(b6)]= M̂I (10,1)�

�
�
�, ˆ
�
M[�9 (b1)]= M̂D (11,11)�

�
�
�{ } .

 
Figure S2. MSA regions potentially able to accommodate local indel histories along tree.  
a A global indel history along a tree. Sequence IDs are assigned to the nodes. Each branch is 
accompanied with an ID (b1 -b6 ) and its own gobal indel history. The “ R ” stands for the 
root. b Resulting MSA of the “extant” sequences at external nodes and the ancestral 
sequences at internal nodes. The boldface letters in the leftmost column are the node IDs. 
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Below the MSA, the bottom curly brackets indicate regions CΚ  (Κ = 4,8  in this example) 

that actually accommodate local indel histories along the tree, And the yellow wedges 
indicate the regions CΚ  (Κ =1,2,3, 5, 6, 7, 9,10  in this example) that can potentially 

accommodate local indel histories along the tree, but that actually do not. In this example, 
Κmax =10 . c LHSs along the branches (in the vector representation). As examples, the PWAs 

along branches b1  and b5  are also shown, along with their own potentially 
local-history-accommodating regions. d LHS along the tree (vector representation). Only the 
non-empty components were shown explicitly. 

The figure follows basically the same notation as Figure S1 does. A cell in the MSA 
is shaded only if it is inserted/deleted along an adjacent branch. The figure was adapted from 
Figure 11 of [32]. 
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I�� 1� -� 2� -� 3� 4� 5� 6� 7� 8� -� 9� A� B�

1�� 1� -� 2� -� 3� -� 5� 6� 7� 8� -� 9� A� B�

2�� 1� -� 2� -� 3� -� 5� 6� 7� 8� C� 9� A� B�

3�� 1� -� 2� -� 3� -� 5� -� 7� 8� C� 9� A� B�

4�� 1� -� 2� D� 3� -� 5� -� 7� 8� C� 9� A� B�

5�� 1� E� 2� D� 3� -� 5� -� 7� 8� C� 9� A� B�

F�� 1� E� 2� -� 3� -� 5� -� 7� 8� C� 9� A� B�

a  Regions of indel rate changes, and a moderate indel history�

�1 �2 �3 �4 �6

R
at
e�� �1 �2

�5 �7 �8

I�� 1� -� 2� -� 3� 4� 5� 6� 7� 8� -� 9� A� B�

1�� 1� -� 2� -� 3� -� 5� 6� 7� 8� -� 9� A� B�

2�� 1� -� 2� -� 3� -� 5� 6� 7� 8� C� 9� A� B�

3�� 1� -� 2� -� 3� -� 5� -� 7� 8� C� 9� A� B�

4�� 1� -� 2� D� 3� -� 5� -� 7� 8� C� 9� A� B�

5�� 1� E� 2� D� 3� -� 5� -� 7� 8� C� 9� A� B�

6�� 1� E� 2� D� 3� -� 5� -� 7� 8� C� 9� -� -�

F�� 1� E� 2� -� 3� -� 5� -� 7� 8� C� 9� -� -�

b  A history with a sticking-out deletion�

�1 �2 �3 �4 �6

R
at
e�� �1 �2

�5
 

I�� 1� -� 2� -� 3� 4� 5� 6� 7� 8� 9� -� A� B�

1�� 1� -� 2� -� 3� -� 5� 6� 7� 8� 9� -� A� B�

2�� 1� -� 2� -� 3� -� 5� 6� 7� 8� 9� C� A� B�

3�� 1� -� 2� -� 3� -� 5� -� -� -� 9� C� A� B�

4�� 1� -� 2� D� 3� -� 5� -� -� -� 9� C� A� B�

5�� 1� E� 2� D� 3� -� 5� -� -� -� 9� C� A� B�

F�� 1� E� 2� -� 3� -� 5� -� -� -� 9� C� A� B�

c  A history with a bridging deletion�

�1 �2 �3 �4

R
at
e�� �1 �2

�5 �6

 
Figure S3. Example of the partially factorable indel model, Eqs.(R8-3.1,2). 
a Regions confining indel rate changes. In this panel, all indels are either completely within or 
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outside of the regions. The graph above the MSA schematically indicates the indel rates of the 
regions. Indel rate changes are confined in two regions, E1  and E2 . Other than that, the 

figure uses the same notation as in Figure S1. Although the deletion of a site with ancestry ‘4’ 
and the deletion of a site with ancestry ‘6’ are separated by a PAS (with ancestry ‘5’), they are 
lumped together to form a single local indel history, because they are both contained in E1 . b 

When a deletion sticks out of a region of changed indel rates. The deletion of the two sites 
(with ancestries ‘A’ and ‘B’) sticks out of region E2 . In this case, γ6  is extended to 
encompass this deletion, and ends up engulfing the old γ7  and γ8 . All indel events within 
this new γ6  define a single local indel history. c When a deletion bridges two regions of 

changed indel rates. The deletion of the three sites (with ancestries ‘6,’ ‘7’ and ‘8’) bridges 
regions E1  and E2 . In this case, E1  and E2 , as well as the spacer region between them, 
are put together to form a “meta-region” (the new γ4 ). And the indel events within the 

meta-region are lumped together to form a single local indel history. The figure was adapted 
from Figure 12 of [32]. 
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Supplementary table 
 
Table S1. Mathematical symbols common in this paper 
 
[NOTE: The symbols are arranged in the following order: Non-alphabetic symbols -> Roman 
alphabetic characters -> Greek alphabetic characters.] 
 
Symbol Description First 

occurrence  

(or definition) 

 

Non-alphabetic symbols 

 x   (bra) A bra-vector that represents the state x . (A 

bra-vector is an extension of a row-vector in 

the standard formulation.) 

Background; 

Supplementary 

appendix SA-1 

 y   (ket) A ket-vector that “accepts” the state y . (A 

ket-vector is an extension of a 

column-vector in the standard formulation.) 

Background; 

Supplementary 

appendix SA-1 

 Ô  (hat) An operator that represents the action of O . 

(An operator is an extension of a matrix in 

the standard formulation.) 

Background; 

Supplementary 

appendix SA-1 

 X ~ Y  (tilde) X  is equivalent to Y . In general 

 

Beginning with Roman alphabetic characters 

{b}T  The set of all branches of the tree (T ). Section R7, 2nd 

paragraph 

C1, C2, ..., CΚmax
 The maximum possible set of regions each 

of which can accommodate local indel 

histories consistent with the portion of a 

given MSA confined in the region. 

Section R7, 

above 

Eq.(R7.8) 

Η ID (s0 )  The set of all possible indel histories along a 

time axis (or a branch) that begin with the 

sequence state, s0 . 

Section R7, 

above 

Eq.(R7.1) 

Η ID (N; s0 )  The set of all possible histories of N  Section R4, 
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indels each along a time axis (or a branch) 

that begin with the sequence state, s0 . 

Eq.(R4.6) 

Η ID α(sA, sD )!" #$  
The set of all indel histories consistent with 

the PWA, α(sA, sD ) . 

Section R4, 

above 

Eq.(R4.9) 

Η ID N;α(sA, sD )"# $%  
The set of all indel histories with N  indels 

each that can result in the PWA, α(sA, sD ) . 

Section R4, 

Eq.(R4.8) 

Î  The identity operator. Section R3, 

Eq.(R3.18) 

L(s)  The length of a sequence in state s . Section R3  

M̂D xB, xE( )  
The deletion of the subsequence between 

(and including) the xB -th and xE -th sites. 

Section R2, 

Figure 3c 

M̂I x, l( )  
The insertion of l  sites between the x -th 

and ( x +1)-th sites. 

Section R2, 

Figure 3b 

M̂ν  The ν -th event in an indel history. Section R4, 

Eq.(R4.7) 

ˆ

M = [M̂1, M̂2,, M̂N ]  

An indel history consisting of N  indel 

events, M̂1, M̂2,, M̂N . 

Section R4, 

Eqs.(R4.6,7) 

M̂ν (b)  The ν  th event in an indel history along 

the branch, b . 

Section R7, 

Eq.(R7.1) 

ˆ

M (b)  

An indel history along the branch, b . Section R7, 

Eq.(R7.1) 

ˆ

M (b){ }

T
 

An indel history along the tree, T . Section R7, 

Eq.(R7.1) 

M̂[k, ik ]  The operator representing the ik -th event in 

the k -th local indel history isolated from a 

global indel history. 

Section R5, 

Eq.(R5.4) 

ˆ

M =

M̂[k,1], ..., M̂[k,Nk ]!
"

#
${ }

k=1,...,K

 

A local history set (LHS) that consists of K  

local indel histories, which in isolation are: 

M̂[k,1], ..., M̂[k,Nk ]!
"

#
$  with k =1,...,K . 

Section R5 

(2nd-last 

paragraph); 

Section R6, 

Eq.(R6.1) 

ˆ

M[γκ ]  

A local indel history that can yield the 

portion of a given PWA confined in the 

Section R6, 

Eq.(R6.7) 
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region, γκ . 

ˆ

M =

ˆ

M[γ1], ˆ


M[γ2 ], ..., ˆ


M[γκmax ]( )

 The vector representation of the LHS ( ˆ

M ), 

using the set of finest local regions, 
γ1, γ2, ..., γκmax . 

Section R6, 

above 

Eq.(R6.7) 

ˆ

M
!

"#
$

%&LHS
 

A local-history-set (LHS) equivalence class 

represented by the LHS, ˆ

M  (e.g., 

= M̂[k,1], ..., M̂[k,Nk ]!
"

#
${ }

k=1,...,K
). 

Section R6, 

Eq.(R6.1) 

Ν1 = 1, 2, 3, ...{ }( )  
The set of all positive integers. In general 

Nmin α(s
A, sD )!" #$  

The minimum number of indels required for 

creating the PWA, α(sA, sD ) .  

Section R4, 

Eq.(R4.8) 

Ν IN (T )  The set of all internal nodes of the tree (T ). Section R7, 2nd 

paragraph 

N X ≡ ΝX (T )( )  
The number of external nodes of the tree 

(T ). 

Section R7, 2nd 

paragraph 

ΝX (T ) = n1, ..., nNX{ }( )  
The set of all external nodes of the tree (T ). Section R7, 2nd 

paragraph 

{n}T =Ν IN (T )+ΝX (T )( )  
The set of all nodes of the tree (T ). Section R7, 2nd 

paragraph 

nA (b)  The “ancestral node” on the upstream end of 

the branch ( b ). 

Section R7, 2nd 

paragraph 

nD (b)  The “descendant node” on the downstream 

end of the branch ( b ). 

Section R7, 2nd 

paragraph 

nRoot  The root node of a given tree. Section R7, 2nd 

paragraph 

P s, n( )!" #$  
The probability that the sequence is in state 

s  at node n  of the tree. 

Section R7, 

Eq.(R7.4) 

P X Y!" #$  
The conditional probability that we have the 

outcome ( X ) conditioned on Y . 

In general 

P ( !s , t ') (s, t)"# $%  
The conditional probability that the sequence 

is in state !s  at time !t  conditioned on 

Section R3, 

Eq.(R3.17) 
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that it was in state s  at time t . 

P [ ], [tI , tF ]( ) (s0, tI )!" #$

= exp − dτ RX
ID (s0, τ )tI

tF∫{ }( )
 

The probability that the sequence with an 

initial state, s0 , underwent no indel during 

the time interval, [tI , tF ] . 

Section R4, 

below 

Eq.(R4.7) 

P0 s0
Root T!" #$  

The probability that the sequence was in 

state s0
Root  at the root and that it underwent 

no indels all across the tree (T ). 

Section R7, 

Eq.(R7.10) 

P̂ID (t, !t )  The finite-time transition operator of our 

indel evolutionary model, from time t  to 

time !t . 

Section R3, 

Eq.(R3.17) 

P̂0
ID ( !t , !!t )  

≡ T exp dτ Q̂0
ID (τ )

"t

""t
∫( ){ } , i.e., the 

operator describing the evolution from !t  

till !!t  with no indel. 

Section R4,  

Eq.(R4.4), 

below 

Eq.(SM-1.4) 

Q̂ID (t) = Q̂I (t)+ Q̂D (t)( )  
The total rate operator (at time t ) of our 

indel evolutionary model. 

Section R3, 

Eq.(R3.11) 

Q̂0
ID (t) ≡ Q̂X

I (t)+ Q̂X
D (t)( )  

The mutation-free part of the total rate 

operator ( Q̂ID (t) ). 

Section R4, 

Eq.(R4.1), 

Eq.(R4.2) 

Q̂M
ID (t) ≡ Q̂M

I (t)+ Q̂M
D (t)( )  

The part of the total rate operator ( Q̂ID (t) ) 

describing the single-mutation transition 

between states. 

Section R4, 

Eq.(R4.1) 

Q̂m (t) = Q̂M
m (t)+ Q̂X

m (t)( )  
The component of the rate operator (at time 

t ) due to mutations of type m = I or D( ) . 

Section R3, 

Eq.(R3.2) 

Q̂M
m (t)  The “mutation part” of the rate operator that 

describes the instantaneous transition (at 

time t ) via mutations of type 

m (= I or D) . 

Section R3, 

Eq.(R3.2), 

Eqs.(R3.12, 13) 

Q̂X
m (t)  The “exit rate part” of the rate operator that 

attenuates the state retention probability via 

mutations of type m (= I or D) . 

Section R3, 

Eq.(R3.2), 

Eq.(R3.6) 

RX
ID (s, t) ≡ RX

I (s, t)+ RX
D (s, t)  The total exit rate of the sequence state ( s ) 

at time t  due to indels. 

Section R4, 

Eq.(R4.3) 

RX
m (s, t)  The component of the exit rate of the Section R3, 
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sequence state ( s ) at time t  due to 

mutations of type m = I or D( ) . 

Eqs.(R3.14, 15) 

r(M̂; s, t)  The rate of the mutation represented by M̂  
on the sequence in state s  at time t . (In 

general, the rate depends on s  and t .) 

Section R4, 

Eq.(R4.7); 

Eq.(SM-1.13) 

rD xB, xE; s, t( )  The rate of deletion of the subsequence 

between (and including) the xB -th and 

xE -th sites, from the sequence (in state s ) 

at time t . (The rate generally depends on 

s  and t .) 

Section R3 

(near the top) 

rI x, l; s, t( )  The rate of insertion of l  sites between the 

x -th and ( x +1)-th sites of the sequence (in 

state s ) at time t . (The rate generally 

depends on s  and t .) 

Section R3 

(near the top), 

Eq.(R3.16) 

SII ⊂ ϒ*= ϒ L
L=0

∞( )  
The space of all basic sequence states. Section R2 

s =

υ = υ1,υ2,...,υL[ ]( )  

A basic sequence state (of length L ), in 

which each site ( x ) is assigned an ancestry 

(υx ) alone. 

Section R2, 

Figure 2c 

s =
(υ1,ω1), (υ2,ω2 ),..., (υL,ωL )[ ]

 
An extended sequence state (of length L ), 

in which each site ( x ) is assigned an 

ancestry (υx ) and a residue (ωx ). 

Section R2, 

Figure 2b 

s(n) ∈ SII( )  
The sequence state at the node n ∈ {n}T . Section R7, 2nd 

paragraph 

sA (b) ≡ s nA (b)( )( )  
The sequence state at the “ancestral node” 

on the upstream end of branch b . 

Section R7, 2nd 

paragraph 

sD (b) ≡ s nD (b)( )( )  
The sequence state at the “descendant node” 

on the downstream end of branch b . 

Section R7, 2nd 

paragraph 

sRoot = s(nRoot )  The sequence state at the root node. Section R7, 3rd 

paragraph 

s0
Root  A “reference” root state. Section R7, 

above 

Eq.(R7.8) 

s(n){ }ΝIN  A set of ancestral states at all internal nodes. Section R7, 
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above 

Eq.(R7.5) 

T = {n}T , {b}T( )( )  
A (rooted) phylogenetic tree. Section R7, 2nd 

paragraph 

T ...{ }  The (summation of) time-ordered product(s). 

It rearranges the operators in each product in 

the temporal order so that the earliest 

operator comes leftmost. 

Section R3, 

Eq.(R3.18); 

Eq.(SA-1.11) 

X(a)
a ∈ A  

The union of the sets (spaces), X(a) ’s, 

which form a function on a space (set), A , 

over all elements ( a ’s) in A . 

In general 

 

Beginning with Greek alphabetic characters 

α(sA, sD )  A PWA between the ancestral sequence 

( sA ) and the descendant sequence ( sD ). 

Section R4, 

above 

Eq.(R4.8) 

α[s1, s2,..., sNX ]  A MSA among the sequence at the external 

nodes, si = s(ni )∈ SII  (ni ∈ ΝX (T ) ). 

Section R7, 

above 

Eq.(R7.4) 

γ1, γ2, ..., γκmax  The finest regions each of which can 

potentially accommodate local indel 

histories consistent with a given PWA. 

Section R6, 

above 

Eq.(R6.7) 

δRX
ID (s, !s , t) ≡

RX
ID (s, t) − RX

ID ( !s , t)
 

The difference of the exit rate of state s  

from that of state !s  at time t . 

Section R6, 

condition (ii); 

Eq.(SM-2.7) 

ΘID (b)  The model parameters for the indel 

processes along the branch, b . 

Section R7, 2nd 

paragraph 

Κmax  The maximum possible number of the 

potentially local-history-accommodating 

regions consistent with a given MSA. 

Section R7, 

above 

Eq.(R7.8) 

κmax  The number of the finest potentially 

local-history-accommodating regions 

consistent with a given PWA. 

Section R6, 

above 

Eq.(R6.7) 
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Λ ID α(sA, sD )"# $%  
The set of all local history sets (LHSs) 

consistent with a PWA (α(sA, sD ) ). 

Section R6, 

Eq.(R6.5) 

Λ ID γκ ;α(s
A, sD )"# $%  

The set of local indel histories that can give 

rise to the sub-PWA of α(sA, sD )  confined 

in γκ . 

Section R6, 

Eq.(R6.7) 

ΜP

α[s1, s2,..., sNX ];

s0
Root;CΚ T

#

$
%
%

&

'
(
(

 

The multiplication factor contributed from 

all local indel histories along the tree (T ) 

each of which can yield the portion of a 
MSA (α[s1, s2,..., sNX ] ) confined in the 

region, CΚ . 

Section R7, 

Eq.(R7.9), 

below 

Eq.(R7.10) 

µP sRoot, s0
Root, nRoot;CΚ

"# $%  
The (multiplicative) change in the state 

probability at the root (nRoot ) due to the 

difference between the states, sRoot  and 

s0
Root , within the region, CΚ . 

Section R7, 

Eq.(R7.8) 

µP

M̂[k,1],
...,

M̂[k,Nk ]

!

"

#
#
#

$

%

&
&
&
, [tI , tF ]

'

(

)
)
)

*

+

,
,
,
(sA, tI )

!

"

#
#
#
#

$

%

&
&
&
&

 

The probability quotient (multiplication 

factor) from the local indel history, 

M̂[k,1], ..., M̂[k,Nk ]!
"

#
$ . 

 

Section R6, 

Eq.(R6.2), 

Eq.(R6.3) 

µP
ˆ

M
!

"#
$

%&LHS
, [tI , tF ]

'

(
)

*

+
, (sA, tI )

!

"
#

$

%
&  

The total probability quotient (multiplication 

factor) from the LHS equivalence class, 

ˆ

M
!

"#
$

%&LHS
. 

Section R6, 

Eq.(R6.2), 

Eq.(R6.4) 

F(a)
a ∈ A∏  

The product of the values of a function, 

F(a) , over all elements ( a ’s) in the space 

(set), A . 

In general 

F(a)
a ∈ A∑  

The summation of the values of a function, 

F(a) , over all elements ( a ’s) in the space 

(set) A . 

In general 

Σ
α[s1, s2,..., sNX ];

n ∈ Ν IN (T ){ };T
$

%
&
&

'

(
)
)

 

The set of all s(n){ }ΝIN ’s (i.e., all sets of 

sequence states at internal nodes) that are 
consistent with the MSA, α[s1, s2,..., sNX ] , 

and the tree, T . 

Section R7, 

above 

Eq.(R7.5); 

above 

Eq.(SM-4.5) 
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ϒ  The set of ancestry indices. Section R2 

υx ∈ ϒ( )  The ancestry index assigned to the x -th site 

of a sequence. 

Section R2 


υ = υ1,υ2,...,υL[ ]  An array of ancestry indices assigned to the 

sites of a sequence (of length L ). 

Section R2, 

Figure 2c 

Ψ ID α[s1, s2,..., sNX ];T"# $%  The set of all pairs, sRoot, ˆ

M (b){ }

T

!
"
#

$
%
& , 

defined on T  that are consistent with 
the MSA, α[s1, s2,..., sNX ] . 

Section R7, 

above 

Eq.(R7.4); 

above 

Eq.(SM-4.4) 

Ω  An alphabet, or the set of all possible 

residues (such as 4 bases for DNA or 20 

amino acids for proteins). 

Section R1 

ωx ∈Ω( )  The residue at the x -th site of a sequence. Section R1 

ω = ω1,ω2,...,ωL[ ]  An array of residues assigned to the sites of 

a sequence (of length L ). 

Section R1, 

Figure 2a 

 
 
 


