## Additional file 1 of

## "General continuous-time Markov model of sequence evolution via insertions/deletions: Are alignment probabilities factorable?"

by Kiyoshi Ezawa

## **Table of contents**

| Supplementary methods                                                        | рр. 2-22  |
|------------------------------------------------------------------------------|-----------|
| SM-1. Perturbation expansion of finite-time transition operator and pairwise | alignment |
| probability: details                                                         | pp. 2-6   |
| SM-2. Factorability of pairwise alignment probability: details               | pp. 6-12  |
| SM-3. Factorability of probability of simplest LHS equivalence class         | рр. 12-13 |
| SM-4. Factorability of multiple sequence alignment probability: details      | pp. 14-22 |
| Supplementary figures (with legends)                                         | рр. 23-28 |
| Supplementary table (S1)                                                     | рр. 29-36 |

© 2016 Kiyoshi Ezawa. Open Access This file is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author (K. Ezawa) and the source site

(https://doi.org/10.1186/s12859-016-1105-7),

provide a link to the Creative Commons license (above), and indicate if changes were made.

## **Supplementary methods**

# SM-1. Perturbation expansion of finite-time transition operator and pairwise alignment probability: details

Here, we apply the technique of time-dependent perturbation expansion (*e.g.*, [29,30]) to our evolutionary model. We first re-express our rate operator as:

$$\hat{Q}^{ID}(t) = \hat{Q}_0^{ID}(t) + \hat{Q}_M^{ID}(t)$$
. ---- Eq.(SM-1.1)

(It corresponds to Eq.(R4.1).) Here  $\hat{Q}_0^{ID}(t) = \hat{Q}_X^I(t) + \hat{Q}_X^D(t)$  describes the mutation-free evolution, and  $\hat{Q}_M^{ID}(t) = \hat{Q}_M^I(t) + \hat{Q}_M^D(t)$  describes the single-mutation transition between states. From the reduced form of Eq.(R3.6), we get:

$$\langle s | \hat{Q}_0^{ID}(t) = -R_X^{ID}(s,t) \langle s |, --- \text{Eq.(SM-1.2)}$$
  
with  $R_X^{ID}(s,t) = R_X^I(s,t) + R_X^D(s,t) - -- \text{Eq.(SM-1.3)}$ 

(Eq.(SM-1.2) and Eq.(SM-1.3) correspond to Eq.(R4.2) and Eq.(R4.3), respectively.) Using the decomposition, Eq.(SM-1.1), the forward equation, Eq.(R3.19), can be rewritten as:

$$\frac{\partial}{\partial t'}\hat{P}^{ID}(t,t') - \hat{P}^{ID}(t,t')\,\hat{Q}_0^{ID}(t') = \hat{P}^{ID}(t,t')\,\hat{Q}_M^{ID}(t') \,. \quad --- \text{Eq.(SM-1.4)}$$

Now, let  $\hat{P}_0^{ID}(t',t'') = T\left\{\exp\left(\int_{t'}^{t'} d\tau \, \hat{Q}_0^{ID}(\tau)\right)\right\}$ , and multiply it from the right of each side of

Eq.(SM-1.4). Then, exploiting the equation,  $\frac{\partial}{\partial t'}\hat{P}_0^{ID}(t',t'') = -\hat{Q}_0^{ID}(t')\hat{P}_0^{ID}(t',t'')$ , we get:

$$\frac{\partial}{\partial t'} \left\{ \hat{P}^{ID}(t,t') \, \hat{P}_0^{ID}(t',t'') \right\} = \hat{P}^{ID}(t,t') \, \hat{Q}_M^{ID}(t') \, \hat{P}_0^{ID}(t',t'') \dots \text{Eq.(SM-1.5)}$$

Integrating the both sides over time  $t' \in [t, t'']$ , using  $\hat{P}^{ID}(t, t) = \hat{P}_0^{ID}(t'', t'') = \hat{I}$ , and replacing

t'' with t', we finally obtain a crucial integral equation:

$$\hat{P}^{ID}(t,t') = \hat{P}_0^{ID}(t,t') + \int_t^{t'} d\tau \, \hat{P}^{ID}(t,\tau) \, \hat{Q}_M^{ID}(\tau) \, \hat{P}_0^{ID}(\tau,t') \, \dots \, \text{Eq.(SM-1.6)}$$

(It corresponds to Eq.(R4.4).) Similarly, starting from the backward equation, Eq.(R3.20), we can obtain another crucial integral equation:

$$\hat{P}^{ID}(t,t') = \hat{P}_0^{ID}(t,t') + \int_t^{t'} d\tau \, \hat{P}_0^{ID}(t,\tau) \, \hat{Q}_M^{ID}(\tau) \, \hat{P}^{ID}(\tau,t') \, . \quad --- \text{Eq.(SM-1.7)}$$

(It corresponds to Eq.(R4.5).) These equations are equivalent to the defining differential equations, Eqs.(R3.19-21), because the former were directly derived from the latter. (And the latter can also be derived from the former.)

Now, to formally solve Eq.(SM-1.6), we assume that the solution can be expanded

as:  $\hat{P}^{ID}(t, t') = \sum_{N=0}^{\infty} \hat{P}^{ID}_{(N)}(t, t')$ , where  $\hat{P}^{ID}_{(N)}(t, t')$  is the collection of terms containing N indel operators each. Substituting this expansion into Eq.(SM-1.6) and comparing the terms with the same number of indel operators, we find the equations:

$$\hat{P}_{(0)}^{ID}(t,t') = \hat{P}_{0}^{ID}(t,t'), \quad \hat{P}_{(N+1)}^{ID}(t,t') = \int_{t}^{t'} d\tau \, \hat{P}_{(N)}^{ID}(t,\tau) \, \hat{Q}_{M}^{ID}(\tau) \, \hat{P}_{0}^{ID}(\tau,t') \, \dots \, \text{Eqs.}(\text{SM-1.8,9})$$

Using Eq.(SM-1.8) as an initial condition, Eq.(SM-1.9) can be recursively solved to give:

$$\hat{P}_{(N)}^{ID}(t,t') = \int_{t < \tau_1 < \cdots < \tau_N < \tau_{N+1} = t'} d\tau_1 \cdots d\tau_N \, \hat{P}_0^{ID}(t,\tau_1) \, T\left\{ \prod_{\nu=1}^N \hat{Q}_M^{ID}(\tau_\nu) \, \hat{P}_0^{ID}(\tau_\nu,\tau_{\nu+1}) \right\} \quad --- \text{ Eq.}(\text{SM-1.10})$$

for  $N \ge 1$ . Substituting this back into the above expansion, we finally get the formal perturbation expansion of the finite-time transition operator:

$$\begin{split} \hat{P}^{ID}(t,t') &= \hat{P}_{0}^{ID}(t,t') + \sum_{N=1}^{\infty} \int_{t<\tau_{1}<\cdots<\tau_{N}<\tau_{N+1}=t'} d\tau_{1}\cdots d\tau_{N} \ \hat{P}_{0}^{ID}(t,\tau_{1}) T\left\{\prod_{\nu=1}^{N} \hat{Q}_{M}^{ID}(\tau_{\nu}) \hat{P}_{0}^{ID}(\tau_{\nu},\tau_{\nu+1})\right\} \\ &= \hat{P}_{0}^{ID}(t_{I},t_{F}) + \int_{t}^{t'} d\tau \ \hat{P}_{0}^{ID}(t,\tau) \ \hat{Q}_{M}^{ID}(\tau) \hat{P}_{0}^{ID}(\tau,t') \\ &+ \int_{t<\tau_{1}<\tau_{2}$$

--- Eq.(SM-1.11)

Note that Eq.(SM-1.11) can be derived also from Eq.(SM-1.7). Because of Eq.(SM-1.2), the equation:

$$\left\langle s \middle| \hat{P}_0^{ID}(t,t') = \exp\left(-\int_t^{t'} d\tau \ R_X^{ID}(s,\tau)\right) \left\langle s \right| \quad \text{--- Eq.(SM-1.12)}$$

always holds for every state  $s \in S^{II}$  and any time points  $(t, t') \in [t_I, t_F]^2$  (with t < t'). Thus,  $\hat{P}_0^{ID}(t, t')$  describes the state retention during the time interval, [t, t'], with the retention probability exponentially decreasing at the exit rate  $(R_X^{ID}(s, \tau))$ . Therefore, the *N*-th term in the solution, Eq.(SM-1.11), literally describes the evolutionary processes where the sequence underwent exactly *N* mutations. In his theorems 1 and 2, Feller [35] mathematically proved that the conditional probability, Eq.(R3.17), obtained by substituting Eq.(SM-1.11) for  $\hat{P}^{ID}(t, t')$  is the solution of the defining time-differential equations of a continuous-time Markov model (the probability versions of Eqs.(R3.19-21)). In his paper presenting a widely used method for stochastic simulations, Gillespie [34] in effect gave a more intuitive derivation of the solution. Gillespie's method is crucial for molecular evolutionists, because it gives the basis of the *genuine* molecular evolution simulators (*e.g.*, [26,27,28]). Our derivation of the solution, Eq.(SM-1.11), serves as a bridge between Feller's mathematically rigorous proof and Gillespie's intuitive derivation. Ours also helps understand the situation underlying Feller's theorems and gives an intuitively clearer view via the neat operator representation of the solution. [NOTE: Besides, our derivation via perturbation expansion is more flexible than theirs, because our method can go beyond the separation of exit rate terms from transition terms (see, *e.g.*, [31]).]

Now, examine the action of Eq.(SM-1.11) (with (t, t') replaced by  $(t_I, t_F)$ ) on every basic state  $s_0 \in S^{II}$ . To simplify the argument, we symbolically rewrite the action of  $\hat{Q}_M^{ID}(t) = \hat{Q}_M^I(t) + \hat{Q}_M^D(t)$  on a bra-vector  $\langle s |$  as:

$$\langle s | \hat{Q}_{M}^{ID}(t) = \sum_{\hat{M} \in M^{ID}[L(s)]} r(\hat{M}; s, t) \langle s | \hat{M} . --- Eq.(SM-1.13)$$

Here,  $\mathbf{M}^{ID}[L] = \left\{ \hat{M}_{I}(x, l) \right\}_{\substack{0 \le x \le L, \\ 1 \le l}} \bigcup \left\{ \hat{M}_{D}(x_{B}, x_{E}) \right\}_{\substack{x_{B} \le x_{E}, \\ x_{B} \le L, 1 \le x_{E}}}$  denotes the set of insertion and

deletion operators that can act on the sequence of length L, and  $r(\hat{M}; s, t)$  denotes the (generally time- and basic-state-dependent) rate parameter of the indel operator  $\hat{M}$ . Now, operating each term of Eq.(SM-1.13) on  $\langle s_0 |$ , replacing (t, t') by  $(t_I, t_F)$ , and applying Eq.(SM-1.12) and Eq.(SM-1.13) alternately, we finally get:

$$\left\langle s_{0} \left| \hat{P}^{ID}(t_{I}, t_{F}) = \exp\left\{ -\int_{t_{I}}^{t_{F}} d\tau \ R_{X}^{ID}(s_{0}, \tau) \right\} \left\langle s_{0} \right|$$
  
+ 
$$\sum_{N=1}^{\infty} \sum_{\left[\hat{M}_{1}, \hat{M}_{2}, \cdots, \hat{M}_{N}\right] \in \mathbf{H}^{ID}(N; s_{0})} P\left[ \left( [\hat{M}_{1}, \hat{M}_{2}, \dots, \hat{M}_{N}], [t_{I}, t_{F}] \right) \right| (s_{0}, t_{I}) \right] \left\langle s_{0} \left| \hat{M}_{1} \hat{M}_{2} \cdots \hat{M}_{N} \right|$$

Here,  $H^{ID}(N; s_0)$  denotes the space of all possible histories of N indels each that begin with the sequence state  $s_0$ . And

$$P\Big[\Big([\hat{M}_{1}, \hat{M}_{2}, \cdots, \hat{M}_{N}], [t_{I}, t_{F}]\Big) | (s_{0}, t_{I})\Big]$$

$$= \int_{t_{I}=\tau_{0}<\tau_{1}<\cdots<\tau_{N}<\tau_{n}<0} d\tau_{1}\cdots d\tau_{N} \Big(\prod_{\nu=1}^{N} r(\hat{M}_{\nu}; s_{\nu-1}, \tau_{\nu})\Big) \exp\left\{-\sum_{\nu=0}^{N} \int_{\tau_{\nu}}^{\tau_{\nu+1}} d\tau R_{X}^{ID}(s_{\nu}, \tau)\right\}\Big|_{\{\langle s_{\nu} \models \langle s_{\nu-1} \mid \hat{M}_{\nu} \mid \nu=1, \dots, N\}}$$
--- Eq.(SM-1.15)

(, which corresponds to Eq.(R4.7),) is the probability that an indel history  $[\hat{M}_1, \hat{M}_2, \dots, \hat{M}_N]$  occurred during the time interval  $[t_I, t_F]$ , given an initial sequence state  $s_0$  at time  $t_I$ . Eqs.(SM-1.14) supplemented by Eq.(SM-1.15) gives a considerably concrete expression of the solution of the defining equations, Eqs.(R3.19-21), of our genuine stochastic evolutionary model. (See subsection 3.1 of [32] for a more detailed explanation of Eqs.(SM-1.14,15).) Now, let  $H^{ID}(N = 0; s_0) = \{(s_0, [])\}$  be the set consisting only of the history with zero indel,

[], starting with the state  $s_0$ . We can interpret  $\exp\left\{-\int_{t_I}^{t_F} d\tau R_X^{ID}(s_0, \tau)\right\}$  as the conditional probability of this zero-indel history,  $P\left[\left([], [t_I, t_F]\right) | (s_0, t_I)\right]$ . Thus, Eq.(SM-1.14) can be rewritten more neatly as:

$$\langle s_0 | \hat{P}^{ID}(t_I, t_F) = \sum_{N=0}^{\infty} \sum_{[\hat{M}_1, \hat{M}_2, \cdots, \hat{M}_N] \in H^{ID}(N; s_0)} P \Big[ \Big( [\hat{M}_1, \hat{M}_2, \dots, \hat{M}_N], [t_I, t_F] \Big) | (s_0, t_I) \Big] \langle s_0 | \hat{M}_1 \hat{M}_2 \cdots \hat{M}_N .$$
  
---- Eq.(SM-1.14')

(It corresponds to Eq.(R4.6).)

Now, substitute an "ancestral" sequence state,  $s^A (\in S^{II})$ , for  $s_0$  in Eq.(SM-1.14'), and take the inner product between it and the ket-vector,  $|s^D\rangle$ , of a "descendant" sequence state,  $s^D (\in S^{II})$ . This procedure gives the finite-time transition probability,

$$\langle s^A | \hat{P}^{ID}(t_I, t_F) | s^D \rangle = P[(s^D, t_F) | (s^A, t_I)]$$
, as the summation of probabilities over all possible  
indel histories consistent with the ancestral and descendant sequence states. As exemplified  
by Eq.(R2.1), the comparison of  $s^D$  with  $s^A$  uniquely determines the pairwise sequence  
alignment (PWA) between them, with a definite homology structure [48]. Let  $\alpha(s^A, s^D)$   
denote (the homology structure of) such a PWA. Then, summing the above transition  
probability,  $\langle s^A | \hat{P}^{ID}(t_I, t_F) | s^D \rangle$ , over all "equivalent"  $s^D$ 's providing  $\alpha(s^A, s^D)$  gives

 $P[(\alpha(s^A, s^D), [t_I, t_F])|(s^A, t_I)]$ , which is the probability that  $\alpha(s^A, s^D)$  resulted from the evolution during the interval  $[t_I, t_F]$ , given  $s^A$  at  $t_I$ . By analogy to the derivation of Eq.(SM-1.14'), we obtain the formal expression of this probability as:

$$P\Big[\Big(\alpha(s^{A},s^{D}),[t_{I},t_{F}]\Big)\Big|\,(s^{A},t_{I})\Big] = \sum_{\substack{N=\\N_{\min}\left[\alpha(s^{A},s^{D})\right]}}^{\infty} \sum_{\substack{[\hat{M}_{1},\hat{M}_{2},\cdots,\hat{M}_{N}]\\\in H^{D}\left[N;\alpha(s^{A},s^{D})\right]}} P\Big[\Big([\hat{M}_{1},\hat{M}_{2},\cdots,\hat{M}_{N}],[t_{I},t_{F}]\Big)\Big|\,(s^{A},t_{I})\Big] \ .$$

--- Eq.(SM-1.16)

(It corresponds to Eq.(R4.8).) Here,  $H^{ID}[N; \alpha(s^A, s^D)]$  denotes the set of all histories with

*N* indels each that can result in  $\alpha(s^A, s^D)$ , and  $N_{\min}[\alpha(s^A, s^D)]$  is the minimum number of indels required for creating the PWA. Now, introduce the symbol that represents the set of all global indel histories consistent with  $\alpha(s^A, s^D)$ :

$$\tilde{\mathrm{H}}^{ID}\left[\alpha(s^{A},s^{D})\right] = \bigcup_{N=N_{\min}\left[\alpha(s^{A},s^{D})\right]}^{\infty} \mathrm{H}^{ID}\left[N;\alpha(s^{A},s^{D})\right]. \quad --- \mathrm{Eq.}(\mathrm{SM-1.17})$$

Then, Eq.(SM-1.16) can be further simplified as:

$$P\Big[\Big(\alpha(s^{A},s^{D}),[t_{I},t_{F}]\Big)\Big|(s^{A},t_{I})\Big] = \sum_{\substack{[\hat{M}_{1},\hat{M}_{2},\cdots,\hat{M}_{N}]\\\in\tilde{\Pi}^{D}\left[\alpha(s^{A},s^{D})\right]}} P\Big[\Big([\hat{M}_{1},\hat{M}_{2},\cdots,\hat{M}_{N}],[t_{I},t_{F}]\Big)\Big|(s^{A},t_{I})\Big].$$

--- Eq.(SM-1.16')

(It corresponds to Eq.(R4.9).) Eq.(SM-1.16) and Eq.(SM-1.16') are the formal expressions of the occurrence probability of PWA  $\alpha(s^A, s^D)$  derived purely from the defining equations, Eqs.(R3.19-21), of our evolutionary model. Thus, they are the "*ab initio* probability" of the PWA. In section SM-2, we will examine its factorability.

#### SM-2. Factorability of pairwise alignment probability: details

Here we examine the factorability of the *ab initio* probability of PWA  $\alpha(s^A, s^D)$ ,

 $P\left[\left(\alpha(s^{A}, s^{D}), [t_{I}, t_{F}]\right) | (s^{A}, t_{I})\right] \text{ in Eq. (R4.9), given the ancestral state (} s^{A}\text{ ) at the initial time} (t_{I}).$ 

As mentioned in section R6 of Results and discussion, each component probability,  $P[([\hat{M}_1, \hat{M}_2, \dots, \hat{M}_N], [t_I, t_F]) | (s^A, t_I)]$  given by Eq.(R4.7), will not be factorable. This is

because its domain of multiple-time integration is not a direct product. Thus, we will need to combine the probabilities of a number of indel histories. How can we do this? As mentioned in Section R5, each indel history,  $[\hat{M}_1, \hat{M}_2, \dots, \hat{M}_N]$ , belongs to a LHS equivalence class represented, *e.g.*, by a LHS,  $\left\{ \left[ \hat{M}[k,1], \dots, \hat{M}[k,N_k] \right] \right\}_{k=1,\dots,K}$ , which will be abbreviated as  $\vec{\hat{M}}$  hereafter. Let  $\left[ \vec{\hat{M}} \right]_{LHS}$  denote this LHS equivalence class. If  $[\hat{M}_1, \hat{M}_2, \dots, \hat{M}_N]$  can yield  $\alpha(s^A, s^D)$ , so can every element of the LHS that  $[\hat{M}_1, \hat{M}_2, \dots, \hat{M}_N]$  belongs to. Thus, obviously, we have  $\left[ \vec{\hat{M}} \right]_{LHS} \subset \tilde{H}^{ID} \left[ \alpha(s^A, s^D) \right]$  for every  $\left[ \vec{\hat{M}} \right]_{LHS}$  containing an indel history that can yield  $\alpha(s^A, s^D)$ . Next, if the two indel histories connect with each other through a

series of binary equivalence relations, Eqs.(R5.2a-d), the two histories belong to the same LHS equivalence class. These facts mean that the set  $\tilde{H}^{ID}[\alpha(s^A, s^D)]$  of all histories consistent with  $\alpha(s^A, s^D)$  can be decomposed into a direct sum:

$$\tilde{\mathrm{H}}^{ID}\left[\alpha(s^{A},s^{D})\right] = \bigcup_{\bar{\tilde{M}} \in \tilde{\Lambda}^{ID}\left[\alpha(s^{A},s^{D})\right]} \left[\bar{\tilde{M}}\right]_{LHS} \quad . -- \mathrm{Eq.}(\mathrm{SM-2.1})$$

(It corresponds to Eq.(R6.5).) Here,  $\tilde{\Lambda}^{ID} [\alpha(s^A, s^D)]$  is the set of all LHSs consistent with  $\alpha(s^A, s^D)$ . This enables us to further rewrite the PWA probability, Eq.(R4.9), as:

$$P\Big[\Big(\alpha(s^{A}, s^{D}), [t_{I}, t_{F}]\Big)\Big| (s^{A}, t_{I})\Big] = \sum_{\bar{\tilde{M}} \in \tilde{\Lambda}^{D}[\alpha(s^{A}, s^{D})]} P\Big[\Big(\Big[\bar{\tilde{M}}\Big]_{LHS}, [t_{I}, t_{F}]\Big)\Big| (s^{A}, t_{I})\Big]$$

---- Eq.(SM-2.2)

(It corresponds to Eq.(R6.6).) Here,

$$P\left[\left(\left[\hat{\tilde{M}}\right]_{LHS}, [t_I, t_F]\right) \middle| (s^A, t_I)\right] = \sum_{[\hat{M}_1, \hat{M}_2, \cdots, \hat{M}_N] \in \left[\hat{\tilde{M}}\right]_{LHS}} P\left[\left([\hat{M}_1, \hat{M}_2, \cdots, \hat{M}_N], [t_I, t_F]\right) \middle| (s^A, t_I)\right]$$

---- Eq.(SM-2.3)

(, which corresponds to Eq.(R6.1),) is the "total probability" of  $\begin{bmatrix} \bar{R} \\ \hat{M} \end{bmatrix}_{LHS}$ . Therefore, if

Eq.(SM-2.3) can be factorized for every LHS  $\overline{\hat{M}} \in \tilde{\Lambda}^{ID} [\alpha(s^A, s^D)]$ , the PWA probability, Eq.(SM-2.2), may also become factorable.

To examine the factorability of Eq.(SM-2.3), it is convenient to consider the quotients:

$$\begin{split} & \mu_{P}\Big[\Big([\hat{M}_{1},\hat{M}_{2},\cdots,\hat{M}_{N}],[t_{I},t_{F}]\Big)\Big|\,(s^{A},t_{I})\Big] \\ &= P\Big[\Big([\hat{M}_{1},\hat{M}_{2},\cdots,\hat{M}_{N}],[t_{I},t_{F}]\Big)\Big|\,(s^{A},t_{I})\Big] \Big/P\Big[\Big([],[t_{I},t_{F}]\Big)\Big|\,(s^{A},t_{I})\Big] \\ & \mu_{P}\Big[\Big(\Big[\hat{M}[k,1],\ldots,\hat{M}[k,N_{k}]\Big],[t_{I},t_{F}]\Big)\Big|\,(s^{A},t_{I})\Big] \\ &= P\Big[\Big(\Big[\hat{M}[k,1],\ldots,\hat{M}[k,N_{k}]\Big],[t_{I},t_{F}]\Big)\Big|\,(s^{A},t_{I})\Big] \\ &= P\Big[\Big(\Big[\hat{M}[k,1],\ldots,\hat{M}[k,N_{k}]\Big],[t_{I},t_{F}]\Big)\Big|\,(s^{A},t_{I})\Big] \Big/P\Big[\big([],[t_{I},t_{F}]\big)\Big|\,(s^{A},t_{I})\Big] \\ & \text{and} \end{split}$$

$$\mu_{P}\left[\left(\left[\overset{\bar{\bar{s}}}{\hat{M}}\right]_{LHS}, [t_{I}, t_{F}]\right) \middle| (s^{A}, t_{I})\right] = P\left[\left(\left[\overset{\bar{\bar{s}}}{\hat{M}}\right]_{LHS}, [t_{I}, t_{F}]\right) \middle| (s^{A}, t_{I})\right] \middle/ P\left[\left([], [t_{I}, t_{F}]\right) \middle| (s^{A}, t_{I})\right], (s^{A}, t_{I})\right] \right]$$

#### ---- Eq.(SM-2.6)

and focus on the relationships between Eqs.(SM-2.4-6). (Eq.(SM-2.5) and Eq.(SM-2.6) correspond to Eq.(R6.3) and Eq.(R6.4), respectively.) This is because Eq.(SM-2.4), for example, can be expressed as:

$$\mu_{P} \Big[ \Big( [\hat{M}_{1}, \hat{M}_{2}, \cdots, \hat{M}_{N}], [t_{I}, t_{F}] \Big) \Big| (s^{A}, t_{I}) \Big]$$

$$= \int_{t_{I} = \tau_{0} < \tau_{1} < \cdots < \tau_{N} < \tau_{N+1} = t_{F}} d\tau_{1} \cdots d\tau_{N} \Big( \prod_{\nu=1}^{N} r(\hat{M}_{\nu}; s_{\nu-1}, \tau_{\nu}) \Big) \exp \left\{ -\sum_{\nu=0}^{N} \int_{\tau_{\nu}}^{\tau_{\nu+1}} d\tau \, \delta R_{X}^{ID}(s_{\nu}, s^{A}, \tau) \right\} \Big|_{\substack{s_{0} = s^{A}, \\ |\langle s_{\nu}| = \langle s_{\nu-1} | \hat{M}_{\nu} | \nu = 1, \dots, N \rangle}}$$

## , --- Eq.(SM-2.7)

where  $\delta R_X^{ID}(s, s', \tau) = R_X^{ID}(s, \tau) - R_X^{ID}(s', \tau)$  is an increment of the exit rate. A similar expression applies also to Eq.(SM-2.5). Compared with Eq.(R4.7) (or Eq.(SM-1.15)), the merit of Eq.(SM-2.7) is that it enables us to focus on the regions of the sequence where the indels took place, if the evolutionary model has desirable properties (revealed below). Thus,

for a LHS, 
$$\overline{\hat{M}} = \left\{ \left[ \hat{M}[k,1], ..., \hat{M}[k,N_k] \right] \right\}_{k=1,...,K}$$
, we will set the following ansatz:  

$$\mu_P \left[ \left( \left[ \overline{\hat{M}} \right]_{LHS}, [t_I, t_F] \right] \right) | (s^A, t_I) \right] = \prod_{k=1}^K \mu_P \left[ \left( \left[ \hat{M}[k,1], ..., \hat{M}[k,N_k] \right], [t_I, t_F] \right) \right) | (s^A, t_I) \right],$$
--- Eq.(SM-2.8)

(, which corresponds to Eq.(R6.2),) and seek to find a set of conditions under which it indeed holds. To get a hint on the conditions, we will look at the both sides of Eq.(SM-2.8) more closely. Using Eq.(SM-2.3) and Eq.(SM-2.7), the left hand side of Eq.(SM-2.8) can be rewritten as:

$$\begin{split} & \mu_{P} \left[ \left( \left[ \vec{\hat{M}} \right]_{LHS}, [t_{I}, t_{F}] \right) \middle| (s^{A}, t_{I}) \right] = \sum_{[\hat{M}_{1}, \hat{M}_{2}, \cdots, \hat{M}_{N}] \in \left[ \vec{\hat{M}} \right]_{LHS}} \mu_{P} \left[ \left( [\hat{M}_{1}, \hat{M}_{2}, \cdots, \hat{M}_{N}], [t_{I}, t_{F}] \right) \middle| (s^{A}, t_{I}) \right] \\ & = \sum_{[\hat{M}_{1}, \hat{M}_{2}, \cdots, \hat{M}_{N}] \in \left[ \vec{\hat{M}} \right]_{LHS}} \int \cdots \int_{\tau_{1} < \tau_{0} < \tau_{1} < \cdots < \tau_{N} < \tau_{N+1} = t_{F}} d\tau_{1} \cdots d\tau_{N} \left[ \left( \prod_{\nu=1}^{N} r(\hat{M}_{\nu}; s_{\nu-1}, \tau_{\nu}) \right) \\ & \times \exp \left\{ -\sum_{\nu=0}^{N} \int_{\tau_{\nu}}^{\tau_{\nu+1}} d\tau \, \delta R_{X}^{ID}(s_{\nu}, s^{A}, \tau) \right\} \right|_{\substack{s_{0} = s^{A}, \\ [\hat{s}_{\nu} = [s_{\nu-1}], \hat{M}_{\nu}]} \right]. \end{split}$$

--- Eq.(SM-2.9)

Meanwhile, the right hand side of Eq.(SM-2.8) can be rewritten as:

$$\begin{split} &\prod_{k=1}^{K} \mu_{P} \Big[ \left( \Big[ \hat{M}[k,1], ..., \hat{M}[k,N_{k}] \Big], [t_{I},t_{F}] \right) \Big| (s^{A},t_{I}) \Big] \\ &= \prod_{k=1}^{K} \begin{bmatrix} \int \cdots \int d\tau(k,1) \cdots d\tau(k,N_{k}) \left( \prod_{i_{k}=1}^{N_{k}} r\left( \hat{M}[k,i_{k}]; s_{i_{k}-1}, \tau(k,i_{k}) \right) \right) \\ &\times \exp \left\{ -\sum_{i_{k}=0}^{N_{k}} \int_{\tau(k,i_{k})}^{\tau(k,i_{k}+1)} d\tau \, \delta R_{X}^{ID}(s_{i_{k}},s^{A},\tau) \right\} \Big|_{\substack{\{s_{0}|=\langle s^{A}|, \\ \{\delta_{i_{k}}|=\langle s_{i_{k}-1}| \hat{M}[k,i_{k}] \} \\ for \ i_{k}=1,...,N_{k}} \end{bmatrix} \Big] \\ &-- \operatorname{Eq.}(\mathrm{SM-2.10}) \end{split}$$

As we can see, Eq.(SM-2.9) and Eq.(SM-2.10) are quite similar. Each term in either expression is integration over  $N\left(=\sum_{k=1}^{K}N_{k}\right)$  time variables. And each history,

 $[\hat{M}_1, \hat{M}_2, \dots, \hat{M}_N]$ , in Eq.(SM-2.9) is nothing other than a rearrangement of the equivalents of the events in the LHS,  $\vec{\hat{M}} = \left\{ \left[ \hat{M}[k,1], \dots, \hat{M}[k,N_k] \right] \right\}_{k=1,\dots,K}$ . Therefore, if the following two equations hold, the ansatz Eq.(SM-2.8), will also hold. (A) The equation between the domains of integration:

$$\sum_{[\hat{M}_{1},\hat{M}_{2},\cdots,\hat{M}_{N}]\in\left[\vec{\tilde{M}}\right]_{LHS}}\int \cdots \int_{t_{I}=\tau_{0}<\tau_{1}<\cdots<\tau_{N}<\tau_{N+1}=t_{F}}d\tau_{1}\cdots d\tau_{N}\left(\ldots\right)$$
$$=\prod_{k=1}^{K}\left[\int_{t_{I}=\tau(k,0)<\tau(k,1)<\cdots<\tau(k,N_{k})<\tau(k,N_{k}+1)=t_{F}}d\tau(k,1)\cdots d\tau(k,N_{k})\right]\left(\ldots\right)$$

(B) The equation between the integrands (*i.e.*, the probability densities):

$$\left(\prod_{i=1}^{N} r(\hat{M}_{v}; s_{v-1}, \tau_{v})\right) \exp\left\{-\sum_{\nu=0}^{N} \int_{\tau_{v}}^{\tau_{v+1}} d\tau \ \delta R_{X}^{ID}(s_{v}, s^{A}, \tau)\right\} \left|_{\substack{s_{0}=s^{A}, \\ \{s_{v}=(s_{v-1}|\hat{M}_{v}\} \\ for \ v=1,...,N\}}}\right|$$
$$= \prod_{k=1}^{K} \left[ \left(\prod_{i_{k}=1}^{N_{k}} r\left(\hat{M}[k, i_{k}]; s_{i_{k}-1}, \tau(k, i_{k})\right)\right) \\ \times \exp\left\{-\sum_{i_{k}=0}^{N_{k}} \int_{\tau(k, i_{k})}^{\tau(k, i_{k}+1)} dt \ \delta R_{X}^{ID}(s_{i_{k}}, s^{A}, \tau)\right\} \right|_{\substack{\{s_{0}=\langle s^{A}| \\ \{s_{0}=\langle s^{A}| \\ \{s^{A}| \\ \{s^{A}=\langle s^{A}| \\ \{s^{A}=\langle s^{A}=\langle s^{A}| \\ \{s^{A}=\langle s^{A}=\langle s^{A}| \\ \{s^{A}=\langle s^{A}=\langle s^{A}| \\ \{s^{A}=\langle s^{A}=\langle s^{A}=\langle s^{A}=\langle s^{A}| \\ \{s^{A}=\langle s^{A}=\langle s^{A}=\langle$$

I

(NOTE: Here, the equations were deliberately given in a rough manner, to aid the reader's intuitive understanding. Supplementary appendix SA-2.1 in Additional file 2 gives their mathematically rigorous forms.) Considering that a LHS equivalence class contains all possible local-order-conserving rearrangements of events in the representative LHS, equation (A) is intuitively very plausible. However, its mathematically rigorous proof is not so

straightforward, and is given in Supplementary appendix SA-2.2 in Additional file 2. Equation (B) might be intuitively less plausible, because of the differences in  $\delta R_X^{ID}(s, s', \tau)$  on both sides. Nevertheless, we can prove that it also holds, provided that the following set of conditions is satisfied.

**Condition (i):** The rate of an indel event  $(r(\hat{M}_{v}; s_{v-1}, \tau_{v}))$  is independent of the portion of the sequence state  $(s_{v-1})$  outside of the region of the local history the event  $(\hat{M}_{v})$  belongs to. **Condition (ii):** The increment of the exit rate due to an indel event  $(\delta R_{X}^{ID}(s_{v}, s_{v-1}, \tau))$ , with

 $\langle s_v | = \langle s_{v-1} | \hat{M}_v \rangle$  is independent of the portion of the sequence state  $(s_{v-1})$  outside of the region of the local history the event  $(\hat{M}_v)$  belongs to.

See Supplementary appendix SA-2.1 and SA-2.3 in Additional file 2 for the derivation of the mathematically rigorous version of this set of conditions. (For illustration, in Supplementary methods SM-3, the factorability of the probability will be examined for the simplest concrete LHS equivalence class (given in Figure 5).)

Once the factorability, Eq.(SM-2.8) (or Eq.(R6.2)), is established for each LHS equivalence class, it is relatively easy to prove the factorability for the total quotient for the PWA:

$$\begin{split} \tilde{\mu}_{P} \Big[ \Big( \alpha(s^{A}, s^{D}), [t_{I}, t_{F}] \Big) \Big| (s^{A}, t_{I}) \Big] &= P \Big[ \Big( \alpha(s^{A}, s^{D}), [t_{I}, t_{F}] \Big) \Big| (s^{A}, t_{I}) \Big] \Big/ P \Big[ \big( [], [t_{I}, t_{F}] \big) \Big| (s^{A}, t_{I}) \Big] \\ &= \sum_{\bar{\tilde{M}} \in \tilde{\Lambda}^{D} \Big[ \alpha(s^{A}, s^{D}) \Big]} \mu_{P} \Big[ \Big( \Big[ \frac{\bar{\tilde{M}}}{\tilde{M}} \Big]_{LHS}, [t_{I}, t_{F}] \Big) \Big| (s^{A}, t_{I}) \Big] \end{split}$$

## --- Eq.(SM-2.11)

(which is equivalent to Eq.(R6.6) (or Eq.(SM-2.2)). Thanks to Eq.(SM-2.8) (or Eq.(R6.2)), each summand on the rightmost side is already factorized. One caveat, however, is that the set of local-history-accommodating regions could vary depending on the LHS, even if the resulting PWA is the same. This is because we are considering *all* indel histories, including non-parsimonious ones, that can yield the PWA,  $\alpha(s^A, s^D)$ . [NOTE: Some non-parsimonious indel histories contain local histories in between contiguous PASs, such as

 $\left[\hat{M}_{l}(x,l), \hat{M}_{D}(x+1,x+l)\right]$ , which leave no traces of their own occurrences. They vary the set

of regions accommodating local histories.] We will choose the maximum possible set of PASs in the given PWA, which separates the PWA into the finest potentially local-history-accommodating regions. [NOTE: Such a maximum set does not necessarily

consist of *all* PASs in the PWA. An example is given in subsection R8-3.] Let  $\gamma_1, \gamma_2, ..., \gamma_{\kappa_{\text{max}}}$  be such regions, where the number of regions,  $\kappa_{\text{max}}$ , is uniquely determined by the PWA and the evolutionary model. Then, we can represent any

$$\vec{\hat{M}} = \left\{ \left[ \hat{M}[k,1], ..., \hat{M}[k,N_k] \right] \right\}_{k=1,...,K} \in \tilde{\Lambda}^{ID} \left[ \alpha(s^A, s^D) \right] \text{ as a vector with } \kappa_{\max} \text{ components:}$$
$$\vec{\hat{M}} = \left( \vec{\hat{M}}[\gamma_1], \vec{\hat{M}}[\gamma_2], ..., \vec{\hat{M}}[\gamma_{\kappa_{\max}}] \right). \text{ Here } \vec{\hat{M}}[\gamma_{\kappa}] = \left[ \hat{M}[k,1], ..., \hat{M}[k,N_k] \right] \text{ if the } k \text{ th local}$$

history is confined in region  $\gamma_{\kappa}$ , or  $\hat{\hat{M}}[\gamma_{\kappa}] = [$  ] (empty) if no events in the LHS occurred in

 $\gamma_{\kappa}$  (Figure S1). Then, keeping  $\mu_{P}\left[\left(\begin{bmatrix} \\ \\ \end{bmatrix}, [t_{I}, t_{F}]\right) \mid (s^{A}, t_{I})\right] = 1$  in mind, the factorability,

Eq.(R6.8), can be re-expressed as:

$$\mu_P\left[\left(\left[\vec{\tilde{M}}\right]_{LHS}, [t_I, t_F]\right)\right| (s^A, t_I)\right] = \prod_{\kappa=1}^{\kappa_{max}} \mu_P\left[\left(\vec{\tilde{M}}[\gamma_{\kappa}], [t_I, t_F]\right)\right| (s^A, t_I)\right] \dots \text{Eq.(SM-2.12)}$$

Now, consider the space  $\tilde{\Lambda}^{ID} \left[ \alpha(s^A, s^D) \right]$  itself. Any two different LHSs in this space differ at least by a local history in some  $\gamma_{\kappa}$ . Conversely, any given vector,

 $\left(\tilde{M}[\gamma_1], \tilde{M}[\gamma_2], ..., \tilde{M}[\gamma_{\kappa_{\max}}]\right)$ , each of whose component  $(\tilde{M}[\gamma_{\kappa}])$  is consistent with the PWA restricted in the region  $(\gamma_{\kappa})$ , defines a LHS in  $\tilde{\Lambda}^{ID}[\alpha(s^A, s^D)]$ . Thus, the set  $\tilde{\Lambda}^{ID}[\alpha(s^A, s^D)]$  should be represented as a "direct product":  $\tilde{\Lambda}^{ID}[\alpha(s^A, s^D)] = \sum_{\kappa=1}^{\kappa_{\max}} \tilde{\Lambda}^{ID}[\gamma_{\kappa}; \alpha(s^A, s^D)]$ , where  $\tilde{\Lambda}^{ID}[\gamma_{\kappa}; \alpha(s^A, s^D)]$  denotes the set of local indel histories in  $\gamma_{\kappa}$  that can give rise to the sub-PWA of  $\alpha(s^A, s^D)$  confined in  $\gamma_{\kappa}$ . Using this structure of  $\tilde{\Lambda}^{ID}[\alpha(s^A, s^D)]$  and substituting Eq.(SM-2.12) for each  $\overline{\tilde{M}} \in \tilde{\Lambda}^{ID}[\alpha(s^A, s^D)]$  into Eq.(SM-2.11), we finally get the desired factorization of the PWA probability quotient:

$$\begin{split} \tilde{\mu}_{P}\Big[\Big(\alpha(s^{A},s^{D}),[t_{I},t_{F}]\Big)\Big|\,(s^{A},t_{I})\Big] &= \prod_{\kappa=1}^{\kappa_{\max}} \tilde{\mu}_{P}\Big[\Big(\tilde{\Lambda}^{ID}\Big[\gamma_{\kappa};\alpha(s^{A},s^{D})\Big],[t_{I},t_{F}]\Big)\Big|\,(s^{A},t_{I})\Big] \ . \\ &--- \operatorname{Eq.}(\mathrm{SM-2.13}) \end{split}$$

Here the multiplication factor,

$$\tilde{\mu}_{P}\left[\left(\tilde{\Lambda}^{ID}\left[\gamma_{\kappa};\alpha(s^{A},s^{D})\right],\left[t_{I},t_{F}\right]\right)\middle|(s^{A},t_{I})\right] = \sum_{\tilde{M}[\gamma_{\kappa}]\in\tilde{\Lambda}^{ID}\left[\gamma_{\kappa};\alpha(s^{A},s^{D})\right]}\mu_{P}\left[\left(\hat{M}[\gamma_{\kappa}],\left[t_{I},t_{F}\right]\right)\middle|(s^{A},t_{I})\right],$$
--- Eq.(SM-2.14)

(, which corresponds to Eq.(R6.8),) represents the total contribution to the PWA probability by *all* PWA-consistent local indel histories that can take place in  $\gamma_{\kappa}$ . Finally, the definition of the PWA probability quotient, Eq.(SM-2.11), transforms Eq.(SM-2.13) into the following key equation for the factorable *ab initio* PWA probability:

$$P\Big[\Big(\alpha(s^{A}, s^{D}), [t_{I}, t_{F}]\Big)\Big| (s^{A}, t_{I})\Big]$$
  
=  $P\Big[\Big([], [t_{I}, t_{F}]\Big)\Big| (s^{A}, t_{I})\Big]\prod_{\kappa=1}^{\kappa_{\max}} \tilde{\mu}_{P}\Big[\Big(\tilde{\Lambda}^{ID}\Big[\gamma_{\kappa}; \alpha(s^{A}, s^{D})\Big], [t_{I}, t_{F}]\Big)\Big| (s^{A}, t_{I})\Big].$  --- Eq.(SM-2.15)

(It corresponds to Eq.(R6.7).)

## SM-3. Factorability of probability of simplest LHS equivalence class

To illustrate how the factorization, Eq.(R6.2) (or Eq.(SM-2.8)), can be satisfied, here we will examine the probability of the simplest concrete LHS equivalence class,

$$\begin{bmatrix} \left[ \hat{M}_{D}(2,4) \right], \left[ \hat{M}_{I}(6,3) \right] \end{bmatrix}_{LHS} \quad \text{(Figure 5). In this example, the two constituent indel histories,} \\ \begin{bmatrix} \hat{M}_{D}(2,4), \hat{M}_{I}(3,3) \end{bmatrix} \text{ and } \begin{bmatrix} \hat{M}_{I}(6,3), \hat{M}_{D}(2,4) \end{bmatrix}, \text{ share the ancestral state,} \\ s^{A} = \begin{bmatrix} 1, 2, 3, 4, 5, 6, 7 \end{bmatrix}, \text{ and the descendant state,} \quad s^{D} = \begin{bmatrix} 1, 5, 6, 8, 9, A, 7 \end{bmatrix}. \text{ In addition, the} \\ \text{histories have their own intermediate states,} \quad \left\langle s_{a} \right| = \left\langle s^{A} \middle| \hat{M}_{D}(2,4) \right| = \left\langle \begin{bmatrix} 1, 5, 6, 7 \end{bmatrix} \right\rangle \text{ and} \end{aligned}$$

$$\langle s_b | = \langle s^A | \hat{M}_1(6,3) | (= \langle [1,2,3,4,5,6,8,9,A,7] | ), \text{ respectively (Figure 5, panels a and b).}$$

Using Eq.(SM-2.7), the probability quotient of the first indel history is given by:  

$$\mu_{P} \Big[ \Big( [\hat{M}_{D}(2,4), \hat{M}_{I}(3,3)], [t_{I},t_{F}] \Big) \Big| (s^{A}, t_{I}) \Big]$$

$$= \iint_{t_{I} < \tau_{1} < \tau_{2} < t_{F}} d\tau_{1} d\tau_{2} \begin{bmatrix} r_{D}(2,4; s^{A}, \tau_{1}) r_{I}(3,3; s_{a}, \tau_{2}) \\ \times \exp \Big\{ - \int_{\tau_{1}}^{\tau_{2}} d\tau \, \delta R_{X}^{ID}(s_{a}, s^{A}, \tau) - \int_{\tau_{2}}^{t_{F}} d\tau \, \delta R_{X}^{ID}(s^{D}, s^{A}, \tau) \Big\} \Big]$$

$$= \iint_{t_{l}<\tau_{1}<\tau_{2}< t_{F}} d\tau_{1} d\tau_{2} \left[ r_{D}(2,4;s^{A},\tau_{1}) r_{l}(3,3;s_{a},\tau_{2}) \\ \times \exp\left\{ -\int_{\tau_{2}}^{t_{F}} d\tau \,\delta R_{X}^{ID}(s^{D},s_{a},\tau) - \int_{\tau_{1}}^{t_{F}} d\tau \,\delta R_{X}^{ID}(s_{a},s^{A},\tau) \right\} \right]. \quad --- \text{Eq.(SM-3.1)}$$

To get the rightmost side, we used the identity:  $\delta R_X^{ID}(s^D, s^A, \tau) = \delta R_X^{ID}(s^D, s_a, \tau) + \delta R_X^{ID}(s_a, s^A, \tau)$ . Similarly, the quotient of the second indel history is:

$$\mu_{P} \Big[ \Big( [\hat{M}_{I}(6,3), \hat{M}_{D}(2,4)], [t_{I},t_{F}] \Big) \Big| (s^{A}, t_{I}) \Big]$$

$$= \iint_{t_{I} < \tau_{2} < \tau_{1} < t_{F}} d\tau_{2} d\tau_{1} \Bigg[ r_{I}(6,3; s^{A}, \tau_{2}) r_{D}(2,4; s_{b}, \tau_{1}) \\ \times \exp \Big\{ - \int_{\tau_{2}}^{\tau_{1}} d\tau \, \delta R_{X}^{ID}(s_{b}, s^{A}, \tau) - \int_{\tau_{1}}^{t_{F}} d\tau \, \delta R_{X}^{ID}(s^{D}, s^{A}, \tau) \Big\} \Bigg]$$

$$= \iint_{t_{I} < \tau_{2} < \tau_{1} < t_{F}} d\tau_{2} d\tau_{1} \Bigg[ r_{I}(6,3; s^{A}, \tau_{2}) r_{D}(2,4; s_{b}, \tau_{1}) \\ \times \exp \Big\{ - \int_{\tau_{2}}^{t_{F}} d\tau \, \delta R_{X}^{ID}(s_{b}, s^{A}, \tau) - \int_{\tau_{1}}^{t_{F}} d\tau \, \delta R_{X}^{ID}(s^{D}, s_{b}, \tau) \Big\} \Bigg] . --- Eq.(SM-3.2)$$

The total quotient of the subject LHS equivalence class is the summation of Eqs.(SM-3.1,2). We first notice that, *modulo differences of measure zero*, the union of the two domains of integration is a direct product:

$$\begin{aligned} & \left\{ (\tau_1, \tau_2) \, \middle| \, t_I < \tau_1 < \tau_2 < t_F \right\} \bigcup \left\{ (\tau_1, \tau_2) \, \middle| \, t_I < \tau_2 < \tau_1 < t_F \right\} \\ & = \left\{ \tau_1 \, \middle| \, t_I < \tau_1 < t_F \right\} \times \left\{ \tau_2 \, \middle| \, t_I < \tau_2 < t_F \right\} \end{aligned} \quad . --- \text{Eq.(SM-3.3)}$$

Thus, the total quotient can be factorized as:

$$\mu_{P} \Big[ \Big( \Big[ \{ [\hat{M}_{D}(2,4)], [\hat{M}_{I}(6,3)] \} \Big]_{LHS}, [t_{I},t_{F}] \Big) \Big| (s^{A},t_{I}) \Big]$$

$$= \Big[ \int_{t_{I}}^{t_{F}} d\tau_{1} r_{D}(2,4;s^{A},\tau_{1}) \exp \Big\{ - \int_{\tau_{1}}^{t_{F}} d\tau \, \delta R_{X}^{ID}(s_{a},s^{A},\tau) \Big\} \Big]$$

$$\times \Big[ \int_{t_{I}}^{t_{F}} d\tau_{2} r_{I}(6,3;s^{A},\tau_{2}) \exp \Big\{ - \int_{\tau_{2}}^{t_{F}} d\tau \, \delta R_{X}^{ID}(s_{b},s^{A},\tau) \Big\} \Big]$$

$$= \mu_{P} \Big[ \Big( [\hat{M}_{D}(2,4)], [t_{I},t_{F}] \Big) \Big| (s^{A},t_{I}) \Big] \mu_{P} \Big[ \Big( [\hat{M}_{I}(6,3)], [t_{I},t_{F}] \Big) \Big| (s^{A},t_{I}) \Big]$$

$$--- \operatorname{Eq.}(SM-3.4)$$

provided that the following equations are satisfied:

$$\begin{aligned} r_D(2,4;s_b,\tau_1) &= r_D(2,4;s^A,\tau_1) , & --- & \text{Eq.}(\text{SM-3.5a}) \\ r_I(3,3;s_a,\tau_2) &= r_I(6,3;s^A,\tau_2) , & --- & \text{Eq.}(\text{SM-3.5b}) \\ \delta R_X^{ID}(s^D,s_b,\tau) &= \delta R_X^{ID}(s_a,s^A,\tau) , & --- & \text{Eq.}(\text{SM-3.5c}) \\ \delta R_X^{ID}(s^D,s_a,\tau) &= \delta R_X^{ID}(s_b,s^A,\tau) . & --- & \text{Eq.}(\text{SM-3.5d}) \end{aligned}$$

Eq.(SM-3.5a) and Eq.(SM-3.5b) correspond to condition (i) in section R6 of Results and discussion. And, owing to the above definitions of  $s_a$  and  $s_b$ , and to the equations

 $\langle s^D | = \langle s_a | \hat{M}_I(3,3) = \langle s_b | \hat{M}_D(2,4) \rangle$ , we see that Eq.(SM-3.5c) and Eq.(SM-3.5d) correspond to condition (ii) in section R6. Eq.(SM-3.4) is a concrete instance of the factorability, Eq.(R6.2) (or Eq.(SM-2.8)), when  $\vec{\hat{M}} = \left\{ [\hat{M}_D(2,4)], [\hat{M}_I(6,3)] \right\}$ . If you will, the factorability for more complex LHS equivalence classes could also be demonstrated concretely, although the

procedure becomes more cumbersome and lengthy. In any case, the proof can be generalized, as is fully described in Supplementary appendix SA-2 in Additional file 2.

## SM-4. Factorability of multiple sequence alignment probability: details

As in section R7 of Results and discussion, here we formally calculate the *ab initio* probability of a MSA given a *rooted* phylogenetic tree,  $T = (\{n\}_T, \{b\}_T)$ , where  $\{n\}_T$  is the set of all nodes of the tree, and  $\{b\}_T$  is the set of all branches of the tree. We decompose the set of all nodes as:  $\{n\}_T = N^{IN}(T) + N^X(T)$ , where  $N^{IN}(T)$  is the set of all internal nodes and  $N^X(T) = \{n_1, ..., n_{N^X}\}$  is the set of all external nodes. (The  $N^X = |N^X(T)|$  is the number

of external nodes.) The root node plays an important role and will be denoted as  $n^{Root}(T)$ , or simply  $n^{Root}$ . Because the tree is rooted, each branch b is directed. Thus, let  $n^{A}(b)$  denote the "ancestral node" on the upstream end of b, and let  $n^{D}(b)$  denote the "descendant node" on the downstream end of b. Let  $s(n) \in S^{II}$  be a sequence state at the node  $n \in \{n\}_{T}$ .

Especially, let  $s^{A}(b) = s(n^{A}(b)) \in S^{II}$  denote a sequence state at  $n^{A}(b)$  and let

$$s^{D}(b) = s(n^{D}(b)) \in S^{H}$$
 denote a sequence state at  $n^{D}(b)$ . Finally, as mentioned in

Background, we suppose that the branch lengths,  $\{|b| \mid b \in \{b\}_T\}$ , and the indel model

parameters,  $\{\Theta_{ID}(b)\}_T = \{\Theta_{ID}(b) \mid b \in \{b\}_T\}$ , are all given. Note that the model parameters  $\Theta_{ID}(b)$  could vary depending on the branch, at least theoretically.

First, we extend the ideas proposed by [13,14,36] to each indel history along a tree, by regarding the indel history along a branch as a map (or a transformation) from the ancestral sequence state to the descendant sequence state, as follows. An indel history along a tree consists of indel histories along all branches of the tree that are interdependent, in the sense that the indel process of a branch *b* determines a sequence state  $s^{D}(b)$  at its descendant node  $n^{D}(b)$ , on which the indel processes along its downstream branches depend. Thus, an indel history on a given root sequence state  $s^{Root} = s(n^{Root}) \in S^{II}$  automatically determines the sequence states at all nodes,  $\{s(n) \in S^{II} \text{ for } \forall n \in \{n\}_{T}\}$ . Let  $\tilde{H}^{ID}(s_{0}) = \bigcup_{N=0}^{\infty} H^{ID}(N; s_{0})$ (with  $H^{ID}(N; s_{0})$  defined below Eq.(R4.6)) be the set of all indel histories along a time axis (or a branch) starting with state  $s_{0}$ . Then, each indel history,  $\{\tilde{M}(b)\}_{T}$ , along tree T and starting with  $s^{Root}$  can be specifically expressed as:

$$\begin{cases} \hat{\hat{M}}(b) = \left[\hat{M}_{1}(b), \dots, \hat{M}_{N(b)}(b)\right] \in \tilde{H}^{ID}\left(s^{A}(b)\right) \quad and \\ \left\langle s^{D}(b)\right| = \left\langle s^{A}(b)\right| \hat{M}_{1}(b) \cdots \hat{M}_{N(b)}(b) \quad for \quad \forall b \in \{b\}_{T} \end{cases} \quad s\left(n^{Root}(T)\right) = s^{Root} \\ \vdots \quad \cdots \quad \text{Eq.(SM-4.1)}$$

(It corresponds to Eq.(R7.1).) Here, the symbol,  $\hat{M}_{\nu}(b)$ , denotes the  $\nu$  th event in the indel history along branch  $b \in \{b\}_T$ . The probability of the indel history, Eq.(SM-4.1), can be easily calculated. First, we already gave the conditional probability of an indel history during the time interval  $[t_1, t_F]$ , by Eq.(R4.7). Because we can correspond each branch  $b \in \{b\}_T$  to a time interval  $[t(n^A(b)), t(n^D(b))]$  (with  $t(n^D(b)) - t(n^A(b)) = |b|)$ , the probability of an

indel history,  $\vec{\hat{M}}(b) = \left[\hat{M}_1(b), ..., \hat{M}_{N(b)}(b)\right] \in \tilde{H}^{ID}(s^A(b))$ , along a branch  $b \in \{b\}_T$  is given by:

$$\begin{split} & P \Big[ \Big( \hat{\hat{M}}(b), b \Big) \Big| \left( s^{A}(b), n^{A}(b) \right) \Big] \\ &= P \Big[ \Big( \Big[ \hat{M}_{1}(b), \cdots, \hat{M}_{N(b)}(b) \Big], \Big[ t(n^{A}(b)), t(n^{D}(b)) \Big] \Big) \Big| \Big( s^{A}(b), t(n^{A}(b)) \Big) \Big] \Big|_{\Theta_{ID}}(b) \end{split}$$
 ---Eq.(SM-4.2)

(It corresponds to Eq.(R7.3).) Here we explicitly showed the branch-dependence of the model parameters. Using Eq.(SM-4.2) as a building block, the probability of the indel history along

$$T, \left\{\hat{\hat{M}}(b)\right\}_{T}, \text{ specified by Eq.(SM-4.1) (or Eq.(R7.1)), is given as:}$$

$$P\left[\left\{\hat{\hat{M}}(b)\right\}_{T} \middle| \left(s^{Root}, n^{Root}\right)\right] = \left(\prod_{\substack{b \in \{b\}_{T}}} P\left[\left(\hat{\hat{M}}(b), b\right)\middle| \left(s^{A}(b), n^{A}(b)\right)\right]\right) \middle|_{\substack{s(n^{Root}) = s^{Root}, \\ for \forall b \in \{b\}_{T}}} \left| \left(s^{Root}, n^{Root}\right)\right| = \left(\sum_{\substack{b \in \{b\}_{T}}} P\left[\left(\hat{\hat{M}}(b), b\right)\middle| \left(s^{A}(b), n^{A}(b)\right)\right]\right) \right|_{\substack{s(n^{Root}) = s^{Root}, \\ for \forall b \in \{b\}_{T}}} \left| \left(s^{Root}, n^{Root}\right)\right| = \left(\sum_{\substack{b \in \{b\}_{T}}} P\left[\left(\hat{\hat{M}}(b), b\right)\middle| \left(s^{A}(b), n^{A}(b)\right)\right]\right) \right|_{\substack{s(n^{Root}) = s^{Root}, \\ for \forall b \in \{b\}_{T}}} \left| \left(s^{Root}, n^{Root}\right)\right| = \left(\sum_{\substack{b \in \{b\}_{T}}} P\left[\left(\hat{\hat{M}}(b), b\right)\middle| \left(s^{A}(b), n^{A}(b)\right)\right]\right) \right|_{\substack{s(n^{Root}) = s^{Root}, \\ for \forall b \in \{b\}_{T}}} \left| \left(s^{Root}, n^{Root}\right)\right| = \left(\sum_{\substack{b \in \{b\}_{T}}} P\left[\left(\hat{\hat{M}}(b), b\right)\middle| \left(s^{A}(b), n^{A}(b)\right)\right]\right) \left| \left(s^{A}(b), n^{A}(b)\right)\right| = \left(\sum_{\substack{s(n^{Root}) = s^{Root}, \\ for \forall b \in \{b\}_{T}}} \left| \left(s^{Root}, n^{Root}\right)\right| \right| = \left(\sum_{\substack{b \in \{b\}_{T}}} P\left[\left(\hat{\hat{M}}(b), b\right)\middle| \left(s^{A}(b), n^{A}(b)\right)\right]\right) \left| \left(s^{Root}, n^{Root}\right)\right| = \left(\sum_{\substack{s(n^{Root}) = s^{Root}, \\ for \forall b \in \{b\}_{T}}} \left| \left(s^{Root}, n^{Root}\right)\right| \right| = \left(\sum_{\substack{s(n^{Root}) = s^{Root}, \\ for \forall b \in \{b\}_{T}}} \left| \left(s^{Root}, n^{Root}\right)\right| \right| = \left(\sum_{\substack{s(n^{Root}) = s^{Root}, \\ for \forall b \in \{b\}_{T}}} \left| \left(s^{Root}, n^{Root}\right)\right| \right) \left| \left(s^{Root}, n^{Root}\right)\right| \right| = \left(\sum_{\substack{s(n^{Root}) = s^{Root}, \\ for \forall b \in \{b\}_{T}}} \left| \left(s^{Root}, n^{Root}\right)\right| \right| = \left(\sum_{\substack{s(n^{Root}) = s^{Root}, \\ for \forall b \in \{b\}_{T}}} \left| \left(s^{Root}, n^{Root}\right)\right| \right| \left(s^{Root}, n^{Root}, n^{Root}$$

(It corresponds to Eq.(R7.2).)

In this way, we can calculate the probability of any indel history  $\left\{ \hat{M}(b) \right\}_T$  along tree T starting with a given root state,  $s^{Root} \in S^{II}$ .

Now, an important fact is that an indel history, along a tree starting with a root sequence state, uniquely yields a MSA,  $\alpha[s_1, s_2, ..., s_{N^X}]$ , among the sequences at the external nodes,  $s_i = s(n_i) \in S^{II}$  ( $n_i \in N^X(T)$ ). [NOTE: Remember that the term "MSA" here means its homology structure.] However, the converse is not true. That is, a given MSA,  $\alpha[s_1, s_2, ..., s_{N^X}]$ , could result from a large number of alternative indel histories along a tree, even when starting with a given sequence state at the root. Moreover, there could be infinitely

many root states consistent with a given MSA. Here, let  $\left(s^{Root}, \left\{\vec{\hat{M}}(b)\right\}_T\right)$  be a pair of a root

state and an indel history along T starting with the state. And let  $\tilde{\Psi}^{ID} \Big[ \alpha[s_1, s_2, ..., s_{N^X}]; T \Big]$ be the set of all such pairs defined on T consistent with  $\alpha[s_1, s_2, ..., s_{N^X}]$ . Then, as the probability of a given PWA is expressed as Eq.(R4.9) supplemented with Eq.(R4.7), the probability of a given MSA under a given model setting (including T) should be expressed as:

$$P\left[\alpha[s_1, s_2, \dots, s_{N^X}] \mid T\right] = \sum_{\substack{\left(s^{Root}, \left\{\tilde{\hat{M}}(b)\right\}_T\right) \\ \in \tilde{\Psi}^D\left[\alpha[s_1, s_2, \dots, s_{N^X}]; T\right]}} P\left[\left(s^{Root}, n^{Root}\right)\right] P\left[\left\{\tilde{\hat{M}}(b)\right\}_T \mid \left(s^{Root}, n^{Root}\right)\right],$$

--- Eq.(SM-4.4)

which (, corresponding to Eq.(R7.4),) is supplemented with Eq.(SM-4.3) (or Eq.(R7.2)). Here,  $P[(s^{Root}, n^{Root})]$  is the probability of state  $s^{Root}$  at the root node  $(n^{Root})$ . (It may be

interpreted as the prior in a Bayesian formalism.) If you will, Eq.(SM-4.4) supplemented with Eq.(SM-4.3) could be interpreted as the "perturbation expansion" of an *ab initio* MSA probability. To make this formal expansion formula more tractable, we consider the ancestral sequence states at all internal nodes, and let  $\{s(n)\}_{N^N} = \{s(n) \in S \mid n \in N^{IN}(T)\}$  denote a set of such ancestral states (or, more precisely, its equivalence class in the sense of endnote (h) (or 8)). To be consistent with a given MSA, the ancestral states must satisfy the "phylogenetic correctness" condition in each MSA column [37,38]. [NOTE: The "phylogenetic correctness" condition guarantees that the sites aligned in a MSA column should share an ancestry. The condition could be rephrased as: "if a site corresponding to the column is present at two points in the phylogenetic tree, the site must also be present all along the shortest path connecting the two points."] As long as the condition is fulfilled in all MSA columns, however, any set of states must be allowed. So, let  $\Sigma[\alpha[s_1, s_2, ..., s_{N^X}]; \{n \in N^{IN}(T)\}; T]$  be the set of all  $\{s(n)\}_{N^{IN}}$  's consistent with  $\alpha[s_1, s_2, ..., s_{N^X}]$  (and tree T). Then, the aforementioned set,  $\tilde{\Psi}^{ID}[\alpha[s_1, s_2, ..., s_{N^X}]; T]$ , can be uniquely decomposed into the following

direct sum:

$$\tilde{\Psi}^{ID} \Big[ \alpha[s_1, s_2, \dots, s_{N^X}]; T \Big] = \bigcup_{\substack{\{s(n)\}_{N^{IN}} \\ \in \Sigma \Big[ \alpha[s_1, s_2, \dots, s_{N^X}]; \{n \in N^{IN}(T)\}; T \Big]} \Psi^{ID} \Big[ \alpha[s_1, s_2, \dots, s_{N^X}]; \{s(n)\}_{N^{IN}}; T \Big]$$

---- Eq.(SM-4.5)

Here,  $\Psi^{ID} \Big[ \alpha[s_1, s_2, ..., s_{N^X}]; \{s(n)\}_{N^{IN}}; T \Big]$  denotes the set of indel histories along *T* consistent with both the MSA ( $\alpha[s_1, s_2, ..., s_{N^X}]$ ) and the ancestral sequence states ( $\{s(n)\}_{N^{IN}}$ ). Substituting Eq.(SM-4.5) into Eq.(SM-4.4), we have:

$$P[\alpha[s_{1}, s_{2}, ..., s_{N^{X}}] \mid T] = \sum_{\substack{\{s(n)\}_{N^{N}} \\ \in \Sigma[\alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{n \in N^{N}(T)\}; T]}} P[\alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{N^{N}} \mid T] .$$

--- Eq.(SM-4.6)

(It corresponds to Eq.(R7.5).) Here,

$$P\left[\alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{N^{IN}} \mid T\right]$$

$$= \sum_{\substack{\left(s^{Root}, \{\tilde{M}(b)\}_{T}\right)\\ \in \Psi^{ID}\left[\alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{N^{IN}}; T\right]}} P\left[\left(s^{Root}, n^{Root}\right)\right] P\left[\left\{\tilde{M}(b)\right\}_{T} \mid \left(s^{Root}, n^{Root}\right)\right]$$

$$= -- \text{Eq.}(SM-4.7)$$

is the probability of simultaneously getting  $\alpha[s_1, s_2, ..., s_{N^X}]$  and  $\{s(n)\}_{N^N}$ . Thus, all terms in Eq.(SM-4.7) share the same homology structure among sequence states at all nodes. Especially, the sequence states at internal nodes have homology structures (with states at other nodes) fixed for respective nodes. And each history consists of indel histories along branches consistent with each other (as in Eq.(SM-4.1) (or Eq.(R7.1))). This, in conjunction with the fact that the states at the internal nodes having node-fixed homology structures could be used as "anchors," the history component of  $\Psi^{ID}[\alpha[s_1, s_2, ..., s_{N^X}]; \{s(n)\}_{N^{IN}}; T]$  could be

vertically decomposed into a direct product:

$$\Psi^{ID}\Big[\alpha[s_1, s_2, ..., s_{N^X}]; \{s(n)\}_{N^{IN}}; T\Big] = \left(s^{Root}, \underset{b \in \{b\}_T}{\times} \tilde{H}^{ID}\Big[\alpha(s^A(b), s^D(b))\Big]\right). \quad --- \text{Eq.}(\text{SM-4.8})$$

Here,  $s^{A}(b)$  and  $s^{D}(b)$  for each branch are proper elements in the set of (the equivalence classes of) states,  $\{s_i\}_{i=1,\dots,N^X} \cup \{s(n)\}_{N^{IN}}$ . (All pairs,  $\left(s^{Root}, \{\tilde{M}(b)\}_T\right)$ 's, share the root state.) Substituting Eq.(SM-4.3) and Eq.(SM-4.8) into Eq.(SM-4.7), and lumping together the terms along each branch using Eq.(R4.9), we finally get:

$$P[\alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{N^{N}} | T]$$
  
=  $P[(s^{Root}, n^{Root})] \prod_{b \in \{b\}_{T}} P[(\alpha(s^{A}(b), s^{D}(b)), b) | (s^{A}(b), n^{A}(b))] \cdot -- \text{Eq.(SM-4.9)}$ 

(It corresponds to Eq.(R7.6).) Here,

(, which corresponds to Eq.(R7.7),) is the probability of the ancestor-descendant PWA along branch *b*. This Eq.(SM-4.9) is basically the expression proposed in [13,14], and we demonstrated in effect that their proposal also holds even with a genuine stochastic evolutionary model. Usually, Eq.(SM-4.6) supplemented with Eq.(SM-4.9) is much more tractable than Eq.(SM-4.4) supplemented with Eq.(SM-4.3), because of the two reasons. (1) Usually, it is not the indel history (along the tree) but (the homology structure of) the set of ancestral sequence states that is inferred from a given MSA. (2) The probability of each indel history along the tree (Eq.(SM-4.3)) is not factorable in general, whereas Eq.(SM-4.9) is a product of PWA probabilities, each of which should be factorable if the conditions (i) and (ii) in section R6 are satisfied.

Now, we seek to factorize the *ab initio* MSA probability into a form somewhat similar to Eq.(R6.7) for the *ab initio* PWA probability. In subsection 4.2 of [32], we did so using the history-based expansion of the MSA probability (*i.e.*, Eq.(SM-4.4) supplemented with Eq.(SM-4.3)). Here, we will use the ancestral-state-based expansion (*i.e.*, Eq.(SM-4.6) supplemented with Eq.(SM-4.9)), as was only briefly sketched at the bottom of subsection 4.2 of [32]. In a MSA, gapless columns play almost the same role as PASs in a PWA. Because of the aforementioned "phylogenetic correctness" condition, a gapless column indicates that the site in question existed all across the phylogenetic tree, and thus that no indel event hit or pierce the site. Therefore, gapless columns will partition a MSA into regions each of which accommodates a local subset of every global history. Analogously to the argument above Eq.(SM-2.12), let  $C_1, C_2, ..., C_{K_{max}}$  be the maximum possible set of such regions determined by a given MSA ( $\alpha[s_1, s_2, ..., s_{N^X}]$ ) and a model setting (including tree *T*). (As argued there, all gapless columns are not necessarily needed to delimit the regions.) Meanwhile, if the conditions (i) and (ii) in section R6 are satisfied, each factor in the product in Eq.(SM-4.9) can be factorized as in Eq.(R6.7):

$$P\Big[(\alpha(s^{A}(b), s^{D}(b)), b) \mid (s^{A}(b), n^{A}(b))\Big]$$
  
=  $P\Big[([], b) \mid (s^{A}(b), n^{A}(b))\Big] \prod_{\kappa_{b}=1}^{\kappa_{\max}(b)} \tilde{\mu}_{P}\Big[\Big(\tilde{\Lambda}^{ID}\Big[\gamma_{\kappa_{b}}(b); \alpha(s^{A}(b), s^{D}(b))\Big], b\Big) \mid (s^{A}(b), n^{A}(b))\Big]$ 

--- Eq.(SM-4.11)

Here we used the notation that helps easily remind the dependence on the branch (b).

Especially,  $\{\gamma_{\kappa_b}(b)\}_{\kappa_b=1,...,\kappa_{\max}(b)}$  denotes the maximum set of regions accommodating local indel histories along *b* consistent with the PWA,  $\alpha(s^A(b), s^D(b))$  (Figure S2). Because the set of gapless columns delimiting  $\{C_{\kappa}\}_{\kappa=1,...,\kappa_{\max}}$  defines a subset of PASs in  $\alpha(s^A(b), s^D(b))$ 

delimiting  $\{\gamma_{\kappa_b}(b)\}_{\kappa_b=1,...,\kappa_{\max}(b)}$ , each  $C_K$  should encompass at least one  $\gamma_{\kappa_b}(b)$  (Figure S2). Thus, Eq.(SM-4.9) supplemented with Eq.(SM-4.11) could be rearranged as:

$$P\left[\alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{N^{IN}} \mid T\right]$$
  
=  $P\left[\left(s^{Root}, n^{Root}\right)\right]\left(\prod_{b \in \{b\}_{T}} P\left[\left([], b\right) \mid (s^{A}(b), n^{A}(b))\right]\right)\left(\prod_{K=1}^{K_{max}} M_{P}\left[\alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{N^{IN}}; C_{K} \mid T\right]\right)$ 

Here, the "raw" multiplication factor contributed from the region,  $C_{\rm K}$ , is given by:

$$\mathbf{M}_{P} \Big[ \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{N^{IN}}; C_{K} \mid T \Big]$$

$$= \prod_{b \in \{b\}_{T}} \left\{ \prod_{\gamma_{\kappa_{b}}(b) \subseteq C_{K}} \tilde{\mu}_{P} \Big[ \Big( \tilde{\Lambda}^{ID} \Big[ \gamma_{\kappa_{b}}(b); \alpha(s^{A}(b), s^{D}(b)) \Big], b \Big) \mid (s^{A}(b), n^{A}(b)) \Big] \right\} \cdot \dots \text{Eq.(SM-4.13)}$$

To factorize the total probability of  $\alpha[s_1, s_2, ..., s_{N^X}]$ , Eq.(SM-4.6) (or Eq.(R7.5)), we need to consider multiple sets of ancestral states. For this purpose, we introduce a "reference" root sequence state,  $s_0^{Root}$ . It can be anything, as long as it is the state at the root consistent with  $\alpha[s_1, s_2, ..., s_{N^X}]$ . Technically, one good candidate for  $s_0^{Root}$  would be a root state obtained by applying the Dollo parsimony principle [39] to each column of the MSA, because it is arguably the most readily available state that satisfies the phylogenetic correctness condition along the entire MSA. Given a reference,  $s_0^{Root}$ , each ancestral state  $s^A(b)$  should differ from  $s_0^{Root}$  only within some  $C_K$ 's. Moreover, the condition (ii) in section R6 guarantees that the impacts of their differences within separate  $C_K$ 's on the exit rate should be independent of each other. Thus, we have:

$$R_X^{ID}(s^A(b), t) = R_X^{ID}(s_0^{Root}, t) + \sum_{K=1}^{K_{max}} \delta R_X^{ID}(s^A(b), s_0^{Root}, t)[C_K], ---Eq.(SM-4.14)$$

where  $\delta R_X^{ID}(s^A(b), s_0^{Root}, t)[C_K]$  is the increment of the exit rate due to the difference between  $s^A(b)$  and  $s_0^{Root}$  within the region  $C_K$ . Remembering that

$$P\left[\left([],b\right) \middle| (s^{A}(b), n^{A}(b))\right] = \exp\left(-\int_{t\left(n^{A}(b)\right)}^{t\left(n^{D}(b)\right)} d\tau \ R_{X}^{ID}(s^{A}(b), \tau)\right), \text{ the product in the middle of the}$$

right hand side of Eq.(SM-4.12) can be rewritten as:

$$\prod_{b \in \{b\}_{T}} P[([], b) | (s^{A}(b), n^{A}(b))]$$
  
=  $P[\{[]\}_{T} | (s_{0}^{Root}, n^{Root})] \prod_{K=1}^{K_{max}} \left\{ exp\left(-\sum_{b \in \{b\}_{T}} \int_{t(n^{A}(b))}^{t(n^{D}(b))} d\tau \, \delta R_{X}^{ID}(s^{A}(b), s_{0}^{Root}, \tau)[C_{K}]\right) \right\}$ .  
--- Eq.(SM-4.15)

Here,  $P\left[\left\{\left[\right]\right\}_{T} \middle| \left(s_{0}^{Root}, n^{Root}\right)\right] = \exp\left(-\sum_{b \in \left\{b\right\}_{T}} \int_{t\left(n^{A}(b)\right)}^{t\left(n^{D}(b)\right)} d\tau R_{X}^{ID}(s_{0}^{Root}, \tau)\right)$  is the probability that

the sequence underwent no indel all across the tree (*T*), conditioned on that the state was  $s_0^{Root}$  at the root. The remaining factor is the (prior) probability of the state at the root,

 $P[(s^{Root}, n^{Root})]$ . We will impose a third condition:

## Condition (iii):

$$P\left[\left(s^{Root}, n^{Root}\right)\right] = P\left[\left(s_{0}^{Root}, n^{Root}\right)\right] \prod_{K=1}^{K_{max}} \mu_{P}\left[s^{Root}, s_{0}^{Root}, n^{Root}; C_{K}\right] \dots Eq.(SM-4.16)$$

(It corresponds to Eq.(R7.8).) Here the multiplication factor,  $\mu_P[s^{Root}, s_0^{Root}, n^{Root}; C_K]$ , represents the change in the state probability at the root due to the difference between  $s^{Root}$ and  $s_0^{Root}$  within  $C_K$ . This equation holds, *e.g.*, when  $P[(s^{Root}, n^{Root})]$  is a geometric distribution or a uniform distribution of the root sequence length,  $L(s^{Root})$ . [NOTE: HMMs commonly use geometric distributions of sequence lengths. The uniform distribution may be a good approximation if we can assume that the ancestral sequence was sampled randomly from a chromosome of length  $L_C$ . In this case, the distribution of the sequence length  $L(s)(<< L_C)$  would be proportional to  $(1-(L(s)-1)/L_C) \approx 1$ .] Using Eqs.(SM-4.15,16), Eq.(SM-4.12) can be rewritten as:

$$P\left[\alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{N^{IN}} \mid T\right]$$
  
=  $P\left[\left(s_{0}^{Root}, n^{Root}\right)\right] P\left[\{[]\}_{T} \mid \left(s_{0}^{Root}, n^{Root}\right)\right] \left(\prod_{K=1}^{K_{max}} \breve{M}_{P}\left[\alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{N^{IN}}; s_{0}^{Root}; C_{K} \mid T\right]\right)$ 

--- Eq.(SM-4.17)

Here, the "augmented" multiplication factor contributed from  $C_{\rm K}$  is defined as:

$$\begin{split} \widetilde{M}_{P} \Big[ \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{N^{IN}}; s_{0}^{Root}; C_{K} \mid T \Big] \\ &= M_{P} \Big[ \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{N^{IN}}; C_{K} \mid T \Big] \ \mu_{P} \Big[ s(n^{Root}), s_{0}^{Root}, n^{Root}; C_{K} \Big] \ . --- \text{Eq.}(SM-4.18) \\ &\times \exp \Biggl( -\sum_{b \in \{b\}_{T}} \int_{t(n^{A}(b))}^{t(n^{D}(b))} d\tau \ \delta R_{X}^{ID}(s^{A}(b), \ s_{0}^{Root}, \ \tau)[C_{K}] \Biggr) \end{split}$$

Substituting Eq.(SM-4.17) into Eq.(SM-4.6) (or Eq.(R7.5)), we are just a step short of the complete factorization. The final step is the "decomposition" of the space,

 $\Sigma \Big[ \alpha[s_1, s_2, ..., s_{N^X}]; \Big\{ n \in \mathbb{N}^{IN}(T) \Big\}; T \Big], \text{ each of whose elements is a set of MSA-consistent}$ ancestral states at all internal nodes. For this purpose, we use  $s_0^{Root}$  once again, and define  $\Delta_{\Sigma} \Big[ s_0^{Root}; \alpha[s_1, s_2, ..., s_{N^X}]; \Big\{ n \in \mathbb{N}^{IN}(T) \Big\}; T \Big] \text{ as the space of deviations of MSA-consistent}$ 

internal states from  $s_0^{Root}$ . As argued above, the deviations of ancestral states from  $s_0^{Root}$  come only from  $C_K$ 's (with K = 1,...,K<sub>max</sub>), and deviations from different  $C_K$ 's behave independently from each other (thanks to the delimiting gapless columns and conditions (i) and (ii)). Thus, we get the direct-product structure:

$$\Delta_{\Sigma} \left[ s_{0}^{Root}; \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \left\{ n \in \mathbb{N}^{IN}(T) \right\}; T \right]$$
  
= 
$$\sum_{K=1}^{K_{max}} \Delta_{\Sigma} \left[ C_{K}; s_{0}^{Root}; \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \left\{ n \in \mathbb{N}^{IN}(T) \right\}; T \right]$$
 ---- Eq.(SM-4.19)

Here,  $\Delta_{\Sigma} \Big[ C_{K}; s_{0}^{Root}; \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \Big\{ n \in \mathbb{N}^{IN}(T) \Big\}; T \Big]$  is the space of deviations within  $C_{K}$ .

In Eq.(SM-4.17), all the *absolute* dependences on  $s_0^{Root}$  were factored out of the product over K. Thus, in Eq.(SM-4.6) (or Eq.(R7.5)), the summation over

 $\Sigma\left[\alpha[s_1, s_2, ..., s_{N^X}]; \left\{n \in \mathbb{N}^{IN}(T)\right\}; T\right] \text{ is reduced to the summation over}$  $\Delta_{\Sigma}\left[s_0^{Root}; \alpha[s_1, s_2, ..., s_{N^X}]; \left\{n \in \mathbb{N}^{IN}(T)\right\}; T\right]. \text{ Exploiting Eq.(SM-4.17) and Eq.(SM-4.19),}$ 

Eq.(SM-4.6) can be re-expressed into the final factorized form:

$$P[\alpha[s_1, s_2, ..., s_{N^X}] \mid T] = P_0[s_0^{Root} \mid T] \prod_{K=1}^{K_{max}} \widetilde{\tilde{M}}_P[\alpha[s_1, s_2, ..., s_{N^X}]; s_0^{Root}; C_K \mid T] \quad . --- \text{Eq.}(\text{SM-4.20})$$

(It corresponds to Eq.(R7.9).) Here,

$$P_0\left[s_0^{Root} \mid T\right] = P\left[\left(s_0^{Root}, n^{Root}\right)\right] P\left[\left\{[\right]\right\}_T \mid \left(s_0^{Root}, n^{Root}\right)\right]. \dots \text{Eq.}(\text{SM-4.21})$$

(, which corresponds to Eq.(R7.10),) is the probability of having a sequence state  $s_0^{Root}$  that has been intact all across tree T, and

$$\begin{split} & \tilde{\mathbf{M}}_{P} \Big[ \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; s_{0}^{Root}; C_{\mathrm{K}} \mid T \Big] \\ &= \sum_{\substack{\{s(n) - s_{0}^{Root}\}_{N^{IN}} \mid C_{\mathrm{K}} \\ \in \Delta_{\Sigma} \Big[ C_{\mathrm{K}}; s_{0}^{Root}; \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{n \in \mathbb{N}^{IN}(T)\}; T \Big]} \widetilde{\mathbf{M}}_{P} \Big[ \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{\mathbb{N}^{IN}}; s_{0}^{Root}; C_{\mathrm{K}} \mid T \Big] \cdot -- \mathrm{Eq.}(\mathrm{SM-4.22}) \Big] \\ & = \mathrm{Eq.} \Big[ \sum_{\substack{\{s(n) - s_{0}^{Root}\}_{\mathbb{N}^{IN}} \in \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{n \in \mathbb{N}^{IN}(T)\}; T \Big]} \widehat{\mathbf{M}}_{P} \Big[ \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{\mathbb{N}^{IN}}; s_{0}^{Root}; C_{\mathrm{K}} \mid T \Big] \cdot -- \mathrm{Eq.}(\mathrm{SM-4.22}) \Big] \\ & = \mathrm{Eq.} \Big[ \sum_{\substack{\{s(n) - s_{0}^{Root}\}_{\mathbb{N}^{IN}} \in \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{n \in \mathbb{N}^{IN}(T)\}; T \Big]} \widehat{\mathbf{M}}_{P} \Big[ \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{\mathbb{N}^{IN}}; s_{0}^{Root}; C_{\mathrm{K}} \mid T \Big] \cdot -- \mathrm{Eq.}(\mathrm{SM-4.22}) \Big] \\ & = \mathrm{Eq.} \Big[ \sum_{\substack{\{s(n) - s_{0}^{Root}\}_{\mathbb{N}^{IN}} \in \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{n \in \mathbb{N}^{IN}(T)\}; T \Big]} \widehat{\mathbf{M}}_{P} \Big[ \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{\mathbb{N}^{IN}}; s_{0}^{Root}; C_{\mathrm{K}} \mid T \Big] \cdot -- \mathrm{Eq.}(\mathrm{SM-4.22}) \Big] \\ & = \mathrm{Eq.} \Big[ \sum_{\substack{\{s(n) - s_{0}^{Root}\}_{\mathbb{N}^{IN}} \in \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{n \in \mathbb{N}^{IN}(T)\}; T \Big]} \widehat{\mathbf{M}}_{P} \Big[ \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; \{s(n)\}_{\mathbb{N}^{IN}}; s_{0}^{Root}; C_{\mathrm{K}} \mid T \Big] \cdot -- \mathrm{Eq.} \Big] \Big] \Big]$$

is the multiplication factor contributed from all MSA-consistent local indel histories (along

T) confined in 
$$C_{\rm K}$$
. [NOTE:  $\tilde{\breve{M}}_{P} \left[ \alpha[s_1, s_2, ..., s_{N^X}]; s_0^{Root}; C_{\rm K} \mid T \right]$  given in Eq.(SM-4.22)

should be equivalent to  $\tilde{M}_{P} \left[ \tilde{\Lambda}_{\Psi}^{ID} \left[ C_{K}; \alpha[s_{1}, s_{2}, ..., s_{N^{X}}]; T \right] | T \right]$  given in Eq.(4.2.9c) of [32], although the two expressions may appear quite different at first glance.] In Eq.(SM-4.22), we let  $\left\{ s(n) - s_{0}^{Root} \right\}_{N^{IN}} \left[ C_{K} \right]$  denote the portion of the deviation of  $\left\{ s(n) \right\}_{N^{IN}}$  from  $s_{0}^{Root}$ confined in  $C_{K}$ .

## Supplementary figures (with legends)

a Global indel history

$$\langle s_{I} |$$

$$\langle s_{1} | = \langle s_{I} | \hat{M}_{D}(4, 4)$$

$$\langle s_{2} | = \langle s_{1} | \hat{M}_{I}(7, 2)$$

$$\langle s_{3} | = \langle s_{2} | \hat{M}_{D}(3, 4)$$

$$\langle s_{4} | = \langle s_{3} | \hat{M}_{I}(4, 1)$$

$$\langle s_{5} | = \langle s_{4} | \hat{M}_{I}(8, 1)$$

$$\langle s_{F} | = \langle s_{5} | \hat{M}_{D}(5, 5)$$

## **b** Resulting MSA (in S<sup>II</sup>) and local regions



**c** LHS(original representation):

$$\begin{split} \vec{\hat{M}} &= \left\{ \vec{\hat{M}}[k] = \left[ \vec{\hat{M}}[k,1], ..., \vec{\hat{M}}[k,N_k] \right] \right\}_{k=1,2,3} \\ \text{with} & \vec{\hat{M}}[1] = \left[ \hat{M}_D(4,4), \hat{M}_D(3,4) \right] = \left[ \hat{M}_D'(4,4), \hat{M}_D'(3,4) \right], \\ & \vec{\hat{M}}[2] = \left[ \hat{M}_I(7,1), \hat{M}_D(8,8) \right] = \left[ \hat{M}_I'(4,1), \hat{M}_D'(5,5) \right], \\ & \vec{\hat{M}}[3] = \left[ \hat{M}_I(8,2), \hat{M}_I(10,1) \right] = \left[ \hat{M}_I'(7,2), \hat{M}_I'(8,1) \right]. \end{split}$$

#### **d** LHS (vector representation):

with  

$$\begin{array}{l} & \bar{\vec{M}} = \left( \vec{\hat{M}}[\gamma_1], \, \bar{\vec{M}}[\gamma_2], \, \dots, \, \bar{\vec{M}}[\gamma_7] \right) \\ \\ & \bar{\vec{M}}[\gamma_1] = \, \bar{\vec{M}}[\gamma_2] = \, \bar{\vec{M}}[\gamma_4] = \, \bar{\vec{M}}[\gamma_7] = [\,], \\ & \bar{\vec{M}}[\gamma_3] = \, \bar{\vec{M}}[1], \, \, \bar{\vec{M}}[\gamma_5] = \, \bar{\vec{M}}[2], \, \, \bar{\vec{M}}[\gamma_6] = \, \bar{\vec{M}}[3]. \end{array}$$

## Figure S1. "Vector" representation of example LHS along time interval.

**a** An example global indel history, consisting of six indel events and seven resulting sequence states (including the initial state  $s_1$ ). **b** The resulting MSA among the sequence states that the indel history went through. The boldface letters in the leftmost column indicate the sequence states in the global history (panel **a**). The 1-9,A-D in the cells are the ancestry indices of the sites. The cells shaded in magenta and red represent the sites to be deleted. Those shaded in cyan and blue represent the inserted sites. And those shaded in yellow represent the inserted sites to be deleted. Below the MSA, the bottom curly brackets indicate the regions  $\gamma_{\kappa}$  ( $\kappa = 3,5,6$  in this example) that actually accommodate local indel histories. And the yellow wedges indicate the regions  $\gamma_{\kappa}$  ( $\kappa = 1,2,4,7$  in this example) that can potentially accommodate local indel histories, but that actually do not. In this example, K = 3,  $N_1 = N_2 = N_3 = 2$ , and  $\kappa_{max} = 7 \cdot c$  The original representation of the local history set (LHS).

In each defining equation for  $\hat{M}[k]$  (k = 1,2,3), the expression in the middle is the local history represented by its action on the initial state ( $s_I$ ). And on the right-most side is the representation by the actual indel events in the global history (in panel **a**), where the prime indicates that each defining event is equivalent to but not necessarily equal to the corresponding event in the global history. **d** The vector representation of the LHS. The "[]" denotes an empty local history, in which no indel event took place. The figure was adapted from Figure 10 of [32]. a Global indel history

**b** Resulting MSA (in *S<sup>II</sup>*) and local regions



Similarly,

**d** LHS along the tree (vector representation):

$$\left\{\bar{\tilde{\hat{M}}}(b)\right\}_{T} = \left\{\left\{\bar{\tilde{\hat{M}}}(b)\right\}_{T} \left[C_{1}\right], \dots, \left\{\bar{\tilde{\hat{M}}}(b)\right\}_{T} \left[C_{10}\right]\right\},$$

with

$$\begin{split} &\left\{\bar{\hat{M}}(b)\right\}_{T} \left[C_{K}\right] = \left\{ \right. \} \quad for \quad K = 1, 2, 3, 5, 6, 7, 9, 10, \\ &\left\{\bar{\hat{M}}(b)\right\}_{T} \left[C_{4}\right] = \left\{\bar{\hat{M}}[\gamma_{6}(b5)] = \left[\hat{M}_{1}(5,1)\right], \quad \bar{\hat{M}}[\gamma_{4}(b1)] = \left[\hat{M}_{D}(4,5)\right], \quad \bar{\hat{M}}[\gamma_{6}(b2)] = \left[\hat{M}_{1}(5,1)\right], \quad \bar{\hat{M}}[\gamma_{4}(b4)] = \left[\hat{M}_{D}(4,4)\right] \right\}, \\ &\left\{\bar{\hat{M}}(b)\right\}_{T} \left[C_{8}\right] = \left\{\bar{\hat{M}}[\gamma_{11}(b6)] = \left[\hat{M}_{1}(10,1)\right], \quad \bar{\hat{M}}[\gamma_{9}(b1)] = \left[\hat{M}_{D}(11,11)\right] \right\}. \end{split}$$

Figure S2. MSA regions potentially able to accommodate local indel histories along tree. a A global indel history along a tree. Sequence IDs are assigned to the nodes. Each branch is accompanied with an ID (b1-b6) and its own gobal indel history. The "*R*" stands for the root. **b** Resulting MSA of the "extant" sequences at external nodes and the ancestral sequences at internal nodes. The boldface letters in the leftmost column are the node IDs. Below the MSA, the bottom curly brackets indicate regions  $C_{\rm K}$  (K = 4,8 in this example) that actually accommodate local indel histories along the tree, And the yellow wedges indicate the regions  $C_{\rm K}$  (K = 1,2,3,5,6,7,9,10 in this example) that can potentially accommodate local indel histories along the tree, but that actually do not. In this example,  $K_{\rm max} = 10 \cdot c$  LHSs along the branches (in the vector representation). As examples, the PWAs along branches *b*1 and *b*5 are also shown, along with their own potentially local-history-accommodating regions. **d** LHS along the tree (vector representation). Only the non-empty components were shown explicitly.

The figure follows basically the same notation as Figure S1 does. A cell in the MSA is shaded only if it is inserted/deleted along an adjacent branch. The figure was adapted from Figure 11 of [32].



**a** Regions of indel rate changes, and a moderate indel history



a Regions confining indel rate changes. In this panel, all indels are either completely within or

outside of the regions. The graph above the MSA schematically indicates the indel rates of the regions. Indel rate changes are confined in two regions,  $E_1$  and  $E_2$ . Other than that, the figure uses the same notation as in Figure S1. Although the deletion of a site with ancestry '4' and the deletion of a site with ancestry '6' are separated by a PAS (with ancestry '5'), they are lumped together to form a single local indel history, because they are both contained in  $E_1$ . **b** When a deletion sticks out of a region of changed indel rates. The deletion of the two sites (with ancestries 'A' and 'B') sticks out of region  $E_2$ . In this case,  $\gamma_6$  is extended to encompass this deletion, and ends up engulfing the old  $\gamma_7$  and  $\gamma_8$ . All indel events within this new  $\gamma_6$  define a single local indel history. **c** When a deletion bridges two regions of changed indel rates. The deletion bridges two regions of changed indel rates. The deletion bridges two regions of changed indel rates. The deletion as  $P_6$  is extended to encompass this deletion of the three sites (with ancestries '6,' '7' and '8') bridges regions  $E_1$  and  $E_2$ . In this case,  $E_1$  and  $E_2$ , as well as the spacer region between them, are put together to form a "meta-region" (the new  $\gamma_4$ ). And the indel events within the meta-region are lumped together to form a single local indel history. The figure was adapted from Figure 12 of [32].

# Supplementary table

## Table S1. Mathematical symbols common in this paper

[NOTE: The symbols are arranged in the following order: Non-alphabetic symbols -> Roman alphabetic characters -> Greek alphabetic characters.]

| Symbol                            | Description                                     | First           |
|-----------------------------------|-------------------------------------------------|-----------------|
|                                   |                                                 | occurrence      |
|                                   |                                                 | (or definition) |
|                                   |                                                 |                 |
| Non-alphabetic symbols            |                                                 |                 |
| $\langle x  $ (bra)               | A bra-vector that represents the state $x$ . (A | Background;     |
|                                   | bra-vector is an extension of a row-vector in   | Supplementary   |
|                                   | the standard formulation.)                      | appendix SA-1   |
| $ y\rangle$ (ket)                 | A ket-vector that "accepts" the state $y$ . (A  | Background;     |
|                                   | ket-vector is an extension of a                 | Supplementary   |
|                                   | column-vector in the standard formulation.)     | appendix SA-1   |
| $\hat{O}$ (hat)                   | An operator that represents the action of $O$ . | Background;     |
|                                   | (An operator is an extension of a matrix in     | Supplementary   |
|                                   | the standard formulation.)                      | appendix SA-1   |
| $X \sim Y$ (tilde)                | X is equivalent to $Y$ .                        | In general      |
|                                   |                                                 |                 |
| Beginning with Roman alphabetic c | haracters                                       |                 |
| $\{b\}_T$                         | The set of all branches of the tree $(T)$ .     | Section R7, 2nd |
|                                   |                                                 | paragraph       |
| $C_1, C_2,, C_{K_{max}}$          | The maximum possible set of regions each        | Section R7,     |
|                                   | of which can accommodate local indel            | above           |
|                                   | histories consistent with the portion of a      | Eq.(R7.8)       |
|                                   | given MSA confined in the region.               |                 |
| $\tilde{\mathrm{H}}^{ID}(s_0)$    | The set of all possible indel histories along a | Section R7,     |
|                                   | time axis (or a branch) that begin with the     | above           |
|                                   | sequence state, $S_0$ .                         | Eq.(R7.1)       |
| $\mathrm{H}^{ID}(N;s_0)$          | The set of all possible histories of $N$        | Section R4,     |

|                                                                                                                                                       | indels each along a time axis (or a branch)                                         | Eq.(R4.6)    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------|
|                                                                                                                                                       | that begin with the sequence state, $s_0$ .                                         |              |
| $\tilde{\mathbf{H}}^{ID}\left[\alpha(\mathbf{s}^{A} \cdot \mathbf{s}^{D})\right]$                                                                     | The set of all indel histories consistent with                                      | Section R4,  |
| $\prod_{\alpha(s,s)}$                                                                                                                                 | the PWA, $\alpha(s^A, s^D)$ .                                                       | above        |
|                                                                                                                                                       |                                                                                     | Eq.(R4.9)    |
| $H^{ID}[N:\alpha(s^A \cdot s^D)]$                                                                                                                     | The set of all indel histories with $N$ indels                                      | Section R4,  |
| $\prod_{n \in [N]} [N, \alpha(S_n, S_n)]$                                                                                                             | each that can result in the PWA, $\alpha(s^A, s^D)$ .                               | Eq.(R4.8)    |
| Î                                                                                                                                                     | The identity operator.                                                              | Section R3,  |
|                                                                                                                                                       |                                                                                     | Eq.(R3.18)   |
| L(s)                                                                                                                                                  | The length of a sequence in state $s$ .                                             | Section R3   |
| $\hat{M}(\mathbf{r},\mathbf{r})$                                                                                                                      | The deletion of the subsequence between                                             | Section R2,  |
| $M_D(\lambda_B, \lambda_E)$                                                                                                                           | (and including) the $x_B$ -th and $x_E$ -th sites.                                  | Figure 3c    |
| $\hat{M}(r,l)$                                                                                                                                        | The insertion of $l$ sites between the $x$ -th                                      | Section R2,  |
| $M_{I}(x,t)$                                                                                                                                          | and $(x+1)$ -th sites.                                                              | Figure 3b    |
| $\hat{M}_{v}$                                                                                                                                         | The $v$ -th event in an indel history.                                              | Section R4,  |
|                                                                                                                                                       |                                                                                     | Eq.(R4.7)    |
|                                                                                                                                                       | An indel history consisting of $N$ indel                                            | Section R4,  |
| $M = [M_1, M_2, \cdots, M_N]$                                                                                                                         | events, $\hat{M}_1, \hat{M}_2, \cdots, \hat{M}_N$ .                                 | Eqs.(R4.6,7) |
| $\hat{M}_{v}(b)$                                                                                                                                      | The $v$ th event in an indel history along                                          | Section R7,  |
|                                                                                                                                                       | the branch, $b$ .                                                                   | Eq.(R7.1)    |
| $\vec{\hat{M}}(1)$                                                                                                                                    | An indel history along the branch, $b$ .                                            | Section R7,  |
| M(D)                                                                                                                                                  |                                                                                     | Eq.(R7.1)    |
| $\left\{ \overline{\hat{M}}(b) \right\}$                                                                                                              | An indel history along the tree, $T$ .                                              | Section R7,  |
| $\left[ \left( I \right) \right]_{T}$                                                                                                                 |                                                                                     | Eq.(R7.1)    |
| $\hat{M}[k,i_k]$                                                                                                                                      | The operator representing the $i_k$ -th event in                                    | Section R5,  |
|                                                                                                                                                       | the $k$ -th local indel history isolated from a                                     | Eq.(R5.4)    |
|                                                                                                                                                       | global indel history.                                                               |              |
| $\hat{\tilde{M}} =$                                                                                                                                   | A local history set (LHS) that consists of $K$                                      | Section R5   |
| $\begin{bmatrix} \hat{M} \\ \hat{M} \\ k \\ 1 \end{bmatrix} = \begin{bmatrix} \hat{M} \\ k \\ N \\ 1 \end{bmatrix}$                                   | local indel histories, which in isolation are:                                      | (2nd-last    |
| $\left\{ \left\lfloor \frac{\mathcal{W}_{[K,1]}, \dots, \mathcal{W}_{[K,\mathcal{W}_{k}]}}{\mathcal{W}_{[K,\mathcal{W}_{k}]}} \right\}_{k=1,\dots,K}$ | $\begin{bmatrix} \hat{M}[k \ 1] & \hat{M}[k \ N \ 1] \end{bmatrix}$ with $k = 1  K$ | paragraph);  |
|                                                                                                                                                       | $\begin{bmatrix} 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$                   | Section R6,  |
|                                                                                                                                                       |                                                                                     | Eq.(R6.1)    |
|                                                                                                                                                       | A local indel history that can yield the                                            | Section R6,  |
|                                                                                                                                                       |                                                                                     |              |

|                                                                                                                                                                              | region, $\gamma_{\kappa}$ .                                                         |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------|
| $\vec{\hat{M}} = \begin{pmatrix} \vec{\hat{M}} \mid \gamma_1 \end{pmatrix}, \vec{\hat{M}} \mid \gamma_2 \end{pmatrix}, \dots, \vec{\hat{M}} \mid \gamma_{n-1} \end{pmatrix}$ | The vector representation of the LHS ( $\vec{\hat{M}}$ ),                           | Section R6,<br>above |
| $\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $                                                                                                     | using the set of finest local regions,                                              | Eq.(R6.7)            |
|                                                                                                                                                                              | $\gamma_1, \gamma_2,, \gamma_{\kappa_{\max}}$ .                                     |                      |
| $\left[ \vec{\hat{M}} \right]$                                                                                                                                               | A local-history-set (LHS) equivalence class                                         | Section R6,          |
| L J <sub>LHS</sub>                                                                                                                                                           | represented by the LHS, $\vec{\hat{M}}$ (e.g.,                                      | Eq.(R6.1)            |
|                                                                                                                                                                              | $= \left\{ \left[ \hat{M}[k,1],, \hat{M}[k,N_k] \right] \right\}_{k=1,,K} \right).$ |                      |
| $N_1 (= \{1, 2, 3,\})$                                                                                                                                                       | The set of all positive integers.                                                   | In general           |
| $N \left[ \alpha(s^A \cdot s^D) \right]$                                                                                                                                     | The minimum number of indels required for                                           | Section R4,          |
| $N_{\min}[\alpha(s_1,s_2)]$                                                                                                                                                  | creating the PWA, $\alpha(s^A, s^D)$ .                                              | Eq.(R4.8)            |
| $\mathbf{N}^{IN}(T)$                                                                                                                                                         | The set of all internal nodes of the tree $(T)$ .                                   | Section R7, 2nd      |
|                                                                                                                                                                              |                                                                                     | paragraph            |
| $N^{X} \left( =  \mathbf{N}^{X}(T)  \right)$                                                                                                                                 | The number of external nodes of the tree                                            | Section R7, 2nd      |
|                                                                                                                                                                              | ( <i>T</i> ).                                                                       | paragraph            |
| $\mathbf{N}^{X}(T) \left(= \left\{n_{1}, \dots, n_{n}\right\}\right)$                                                                                                        | The set of all external nodes of the tree $(T)$ .                                   | Section R7, 2nd      |
|                                                                                                                                                                              |                                                                                     | paragraph            |
| $\{n\}_T \left(= \mathbf{N}^{IN}(T) + \mathbf{N}^X(T)\right)$                                                                                                                | The set of all nodes of the tree $(T)$ .                                            | Section R7, 2nd      |
|                                                                                                                                                                              |                                                                                     | paragraph            |
| $n^A(b)$                                                                                                                                                                     | The "ancestral node" on the upstream end of                                         | Section R7, 2nd      |
|                                                                                                                                                                              | the branch (b).                                                                     | paragraph            |
| $n^D(b)$                                                                                                                                                                     | The "descendant node" on the downstream                                             | Section R7, 2nd      |
|                                                                                                                                                                              | end of the branch ( <i>b</i> ).                                                     | paragraph            |
| $n^{Root}$                                                                                                                                                                   | The root node of a given tree.                                                      | Section R7, 2nd      |
|                                                                                                                                                                              |                                                                                     | paragraph            |
| P[(s,n)]                                                                                                                                                                     | The probability that the sequence is in state                                       | Section R7,          |
|                                                                                                                                                                              | s at node n of the tree.                                                            | Eq.(R7.4)            |
| P[X Y]                                                                                                                                                                       | The conditional probability that we have the                                        | In general           |
|                                                                                                                                                                              | outcome $(X)$ conditioned on $Y$ .                                                  |                      |
| P[(s',t') (s,t)]                                                                                                                                                             | The conditional probability that the sequence                                       | Section R3,          |
|                                                                                                                                                                              | is in state $s'$ at time $t'$ conditioned on                                        | Eq.(R3.17)           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | that it was in state $s$ at time $t$ .                                                                           |                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|
| $P\left[\left(\left[\right],\left[t_{I},t_{F}\right]\right) \mid (s_{0},t_{I})\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The probability that the sequence with an                                                                        | Section R4,     |
| $\left( \begin{array}{c} \mathbf{r} \\ \mathbf{r} \\$ | initial state, $s_0$ , underwent no indel during                                                                 | below           |
| $\left(=\exp\left\{-\int_{t_{I}}a\tau R_{X}\left(S_{0},\tau\right)\right\}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the time interval, $[t_I, t_F]$ .                                                                                | Eq.(R4.7)       |
| $\mathbf{P}\left[\mathbf{s}^{Root} \mid \mathbf{T}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The probability that the sequence was in                                                                         | Section R7,     |
| $\begin{bmatrix} I_0 \begin{bmatrix} S_0 \end{bmatrix} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | state $s_0^{Root}$ at the root and that it underwent                                                             | Eq.(R7.10)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | no indels all across the tree $(T)$ .                                                                            |                 |
| $\hat{P}^{ID}(t,t')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The finite-time transition operator of our                                                                       | Section R3,     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | indel evolutionary model, from time $t$ to                                                                       | Eq.(R3.17)      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | time $t'$ .                                                                                                      |                 |
| $\hat{P}_0^{ID}(t',t'')$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= T \left\{ \exp\left(\int_{0}^{t''} d\tau  \hat{O}^{ID}(\tau) \right) \right\}  i.e. \text{ the}$              | Section R4,     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $= \prod_{i=1}^{n} \left\{ \exp\left(\int_{t_i}^{t_i} dt \mathcal{Q}_0(t)\right) \right\}, t.e., \text{ the } i$ | Eq.(R4.4),      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | operator describing the evolution from $t'$                                                                      | below           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | till $t''$ with no indel.                                                                                        | Eq.(SM-1.4)     |
| $\hat{Q}^{ID}(t) \left(= \hat{Q}^{I}(t) + \hat{Q}^{D}(t)\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The total rate operator (at time $t$ ) of our                                                                    | Section R3,     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | indel evolutionary model.                                                                                        | Eq.(R3.11)      |
| $\hat{O}^{ID}(t) \left( = \hat{O}^{I}(t) + \hat{O}^{D}(t) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The mutation-free part of the total rate                                                                         | Section R4,     |
| $\mathcal{Q}_0(t) \left(= \mathcal{Q}_X(t) + \mathcal{Q}_X(t)\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | operator $(\hat{Q}^{ID}(t))$ .                                                                                   | Eq.(R4.1),      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | Eq.(R4.2)       |
| $\hat{O}^{ID}(t) \left( = \hat{O}^{I}(t) + \hat{O}^{D}(t) \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The part of the total rate operator $(\hat{Q}^{lD}(t))$                                                          | Section R4,     |
| $\mathcal{Q}_M(l) \left(= \mathcal{Q}_M(l) + \mathcal{Q}_M(l)\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | describing the single-mutation transition                                                                        | Eq.(R4.1)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | between states.                                                                                                  |                 |
| $\hat{\Omega}^{m}(t) = (\hat{\Omega}^{m}(t) + \hat{\Omega}^{m}(t))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The component of the rate operator (at time                                                                      | Section R3,     |
| $\mathcal{Q}^{(i)} = \left(\mathcal{Q}_M^{(i)} + \mathcal{Q}_X^{(i)}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t) due to mutations of type $m (= I \text{ or } D)$ .                                                            | Eq.(R3.2)       |
| $\hat{Q}_{M}^{m}(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The "mutation part" of the rate operator that                                                                    | Section R3,     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | describes the instantaneous transition (at                                                                       | Eq.(R3.2),      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | time $t$ ) via mutations of type                                                                                 | Eqs.(R3.12, 13) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m (= I  or  D).                                                                                                  |                 |
| $\hat{Q}_X^m(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The "exit rate part" of the rate operator that                                                                   | Section R3,     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | attenuates the state retention probability via                                                                   | Eq.(R3.2),      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mutations of type $m (= I \text{ or } D)$ .                                                                      | Eq.(R3.6)       |
| $R_X^{ID}(s,t) = R_X^I(s,t) + R_X^D(s,t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The total exit rate of the sequence state $(s)$                                                                  | Section R4,     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | at time $t$ due to indels.                                                                                       | Eq.(R4.3)       |
| $R_X^m(s,t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The component of the exit rate of the                                                                            | Section R3,     |

|                                                                                              | sequence state $(s)$ at time $t$ due to           | Eqs.(R3.14, 15) |
|----------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------|
|                                                                                              | mutations of type $m (= I \text{ or } D)$ .       |                 |
| $r(\hat{M}; s, t)$                                                                           | The rate of the mutation represented by $\hat{M}$ | Section R4,     |
|                                                                                              | on the sequence in state $s$ at time $t$ . (In    | Eq.(R4.7);      |
|                                                                                              | general, the rate depends on $s$ and $t$ .)       | Eq.(SM-1.13)    |
| $r_D(x_B, x_E; s, t)$                                                                        | The rate of deletion of the subsequence           | Section R3      |
|                                                                                              | between (and including) the $x_B$ -th and         | (near the top)  |
|                                                                                              | $x_E$ -th sites, from the sequence (in state s)   |                 |
|                                                                                              | at time $t$ . (The rate generally depends on      |                 |
|                                                                                              | s and $t$ .)                                      |                 |
| $r_{l}(x,l;s,t)$                                                                             | The rate of insertion of $l$ sites between the    | Section R3      |
|                                                                                              | x -th and $(x+1)$ -th sites of the sequence (in   | (near the top), |
|                                                                                              | state $s$ ) at time $t$ . (The rate generally     | Eq.(R3.16)      |
|                                                                                              | depends on $s$ and $t$ .)                         |                 |
| $S^{II}\left(\subset\Upsilon^{*}=\bigcup_{L=0}^{\infty}\Upsilon^{L}\right)$                  | The space of all basic sequence states.           | Section R2      |
|                                                                                              | A basic sequence state (of length $L$ ), in       | Section R2,     |
| $S(=v=[v_1,v_2,,v_L])$                                                                       | which each site $(x)$ is assigned an ancestry     | Figure 2c       |
|                                                                                              | $(v_x)$ alone.                                    |                 |
| $\breve{S} =$                                                                                | An extended sequence state (of length $L$ ),      | Section R2,     |
| $\left[(\upsilon_1, \omega_1), (\upsilon_2, \omega_2), \dots, (\upsilon_L, \omega_L)\right]$ | in which each site $(x)$ is assigned an           | Figure 2b       |
|                                                                                              | ancestry $(v_x)$ and a residue $(\omega_x)$ .     |                 |
| $s(n) (\subset S^{II})$                                                                      | The sequence state at the node $n \in \{n\}_T$ .  | Section R7, 2nd |
| $S(n)(\subset S)$                                                                            |                                                   | paragraph       |
| $s^{A}(h)\left(-s\left(n^{A}(h)\right)\right)$                                               | The sequence state at the "ancestral node"        | Section R7, 2nd |
| S(U) = S(U(U))                                                                               | on the upstream end of branch $b$ .               | paragraph       |
| $s^{D}(h) \left( = s(n^{D}(h)) \right)$                                                      | The sequence state at the "descendant node"       | Section R7, 2nd |
| S(U) = S(U(U))                                                                               | on the downstream end of branch $b$ .             | paragraph       |
| $s^{Root} = s(n^{Root})$                                                                     | The sequence state at the root node.              | Section R7, 3rd |
|                                                                                              |                                                   | paragraph       |
| S <sub>0</sub> <sup>Root</sup>                                                               | A "reference" root state.                         | Section R7,     |
|                                                                                              |                                                   | above           |
|                                                                                              |                                                   | Eq.(R7.8)       |
| $\left\{s(n)\right\}_{N^{IN}}$                                                               | A set of ancestral states at all internal nodes.  | Section R7,     |

|                                                                    |                                                               | above           |
|--------------------------------------------------------------------|---------------------------------------------------------------|-----------------|
|                                                                    |                                                               | Eq.(R7.5)       |
| $T\left( \left( \left( m\right) - \left( h\right) \right) \right)$ | A (rooted) phylogenetic tree.                                 | Section R7, 2nd |
| $I \left(= \left(\{n\}_T, \{D\}_T\right)\right)$                   |                                                               | paragraph       |
| $T\{\ldots\}$                                                      | The (summation of) time-ordered product(s).                   | Section R3,     |
|                                                                    | It rearranges the operators in each product in                | Eq.(R3.18);     |
|                                                                    | the temporal order so that the earliest                       | Eq.(SA-1.11)    |
|                                                                    | operator comes leftmost.                                      |                 |
| X(a)                                                               | The union of the sets (spaces), $X(a)$ 's,                    | In general      |
| $\bigcup_{a \in A} \Lambda(u)$                                     | which form a function on a space (set), $A$ ,                 |                 |
|                                                                    | over all elements $(a's)$ in $A$ .                            |                 |
|                                                                    |                                                               |                 |
| Beginning with Greek alphabetic cł                                 | naracters                                                     |                 |
| $\alpha(s^A, s^D)$                                                 | A PWA between the ancestral sequence                          | Section R4,     |
|                                                                    | $(s^A)$ and the descendant sequence $(s^D)$ .                 | above           |
|                                                                    |                                                               | Eq.(R4.8)       |
| $\alpha[s_1, s_2, \dots, s_{N^X}]$                                 | A MSA among the sequence at the external                      | Section R7,     |
|                                                                    | nodes, $s_i = s(n_i) \in S^{II}$ $(n_i \in \mathbf{N}^X(T)).$ | above           |
|                                                                    |                                                               | Eq.(R7.4)       |
| $\gamma_1, \gamma_2,, \gamma_{\kappa_{\max}}$                      | The finest regions each of which can                          | Section R6,     |
|                                                                    | potentially accommodate local indel                           | above           |
|                                                                    | histories consistent with a given PWA.                        | Eq.(R6.7)       |
| $\delta R_X^{ID}(s,s',t) =$                                        | The difference of the exit rate of state s                    | Section R6,     |
| $R_X^{ID}(s,t) - R_X^{ID}(s',t)$                                   | from that of state $s'$ at time $t$ .                         | condition (ii); |
|                                                                    |                                                               | Eq.(SM-2.7)     |
| $\Theta_{ID}(b)$                                                   | The model parameters for the indel                            | Section R7, 2nd |
|                                                                    | processes along the branch, $b$ .                             | paragraph       |
| K <sub>max</sub>                                                   | The maximum possible number of the                            | Section R7,     |
|                                                                    | potentially local-history-accommodating                       | above           |
|                                                                    | regions consistent with a given MSA.                          | Eq.(R7.8)       |
| κ <sub>max</sub>                                                   | The number of the finest potentially                          | Section R6,     |
|                                                                    | local-history-accommodating regions                           | above           |
|                                                                    | consistent with a given PWA.                                  | Eq.(R6.7)       |

| $\tilde{\mathbf{A}}^{ID} \left[ \alpha \left( \mathbf{s}^{A} \cdot \mathbf{s}^{D} \right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The set of all local history sets (LHSs)                                                                             | Section R6, |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------|
| $\Lambda \left[ \alpha(s,s) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | consistent with a PWA ( $\alpha(s^A, s^D)$ ).                                                                        | Eq.(R6.5)   |
| $\tilde{\Lambda}^{ID}\Big[\gamma_{\kappa}; \alpha(s^A, s^D)\Big]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The set of local indel histories that can give                                                                       | Section R6, |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rise to the sub-PWA of $\alpha(s^A, s^D)$ confined                                                                   | Eq.(R6.7)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in $\gamma_{\kappa}$ .                                                                                               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The multiplication factor contributed from                                                                           | Section R7, |
| $\begin{bmatrix} \tilde{\mathbf{M}}_{P} \\ \mathbf{M}_{P} \end{bmatrix}_{a^{Root}} \begin{bmatrix} \alpha_{1} s_{2}, \dots, s_{N^{X}} \end{bmatrix},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | all local indel histories along the tree $(T)$                                                                       | Eq.(R7.9),  |
| $\begin{bmatrix} S_0 \\ \vdots \end{bmatrix}, C_K \begin{bmatrix} T \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | each of which can yield the portion of a                                                                             | below       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MSA ( $\alpha[s_1, s_2,, s_{N^X}]$ ) confined in the                                                                 | Eq.(R7.10)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | region, $C_{\rm K}$ .                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The (multiplicative) change in the state                                                                             | Section R7, |
| $\mu_{P}[s, s_{0}, n; C_{K}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | probability at the root $(n^{Root})$ due to the                                                                      | Eq.(R7.8)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | difference between the states, $s^{Root}$ and                                                                        |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $s_0^{Root}$ , within the region, $C_{ m K}$ .                                                                       |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The probability quotient (multiplication                                                                             | Section R6, |
| $\left  \left  M[k,1], \right  \right  = \left  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | factor) from the local indel history,                                                                                | Eq.(R6.2),  |
| $ \begin{array}{c c} \mu_p \\ \vdots \\ \mu_p \\ \vdots \\ \mu_I \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{bmatrix} \hat{M} [L, 1] & \hat{M} [L, N] \end{bmatrix}$                                                      | Eq.(R6.3)   |
| $\left[\left(\left[M\left[\kappa,N_{k}\right]\right]\right)\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{bmatrix} M \begin{bmatrix} K, 1 \end{bmatrix}, \dots, M \begin{bmatrix} K, N_k \end{bmatrix} \end{bmatrix}.$ |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                      |             |
| $\left[ \mu \left[ \left( \begin{bmatrix} \bar{x} \\ \bar{M} \end{bmatrix}  [t, t] \right) \right] (s^{A}, t) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The total probability quotient (multiplication                                                                       | Section R6, |
| $\mu_{P}\left[\left(\left[\begin{matrix} \mu_{I} \\ \mu_{S} \end{matrix}\right]_{LHS}, \left[\iota_{I}, \iota_{F}\right]\right) \left(\begin{matrix} \sigma & , \iota_{I} \end{matrix}\right)\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | factor) from the LHS equivalence class,                                                                              | Eq.(R6.2),  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{bmatrix} \bar{\tilde{M}} \end{bmatrix}$                                                                      | Eq.(R6.4)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                      |             |
| $\prod F(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The product of the values of a function,                                                                             | In general  |
| $\mathbf{I} \mathbf{I}_{a \in A} \mathbf{I}^{(a)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F(a), over all elements (a's) in the space                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (set), A.                                                                                                            |             |
| $\sum F(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The summation of the values of a function,                                                                           | In general  |
| $\sum a \in A^{-1}(w)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F(a), over all elements (a's) in the space                                                                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (set) $A$ .                                                                                                          |             |
| $\left[\alpha[s_1,s_2,\ldots,s_{-n}]\cdot\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The set of all $\{s(n)\}_{N^{IN}}$ 's ( <i>i.e.</i> , all sets of                                                    | Section R7, |
| $\sum_{n \in \mathbb{N}^{N}(T) \setminus T} \sum_{n \in \mathbb{N}^{N}(T) \setminusT} \sum_{n \in \mathbb{N}^{N}(T) \setminusT$ | sequence states at internal nodes) that are                                                                          | above       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | consistent with the MSA, $\alpha[s_1, s_2,, s_{N^X}]$ ,                                                              | Eq.(R7.5);  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the tree, $T$ .                                                                                                  | above       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                      | Eq.(SM-4.5) |

| Ŷ                                                                              | The set of ancestry indices.                                                                           | Section R2  |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|
| $v_x \in \Upsilon$                                                             | The ancestry index assigned to the $x$ -th site                                                        | Section R2  |
|                                                                                | of a sequence.                                                                                         |             |
| $\vec{v} = [v_1, v_2, \dots, v_L]$                                             | An array of ancestry indices assigned to the                                                           | Section R2, |
|                                                                                | sites of a sequence (of length $L$ ).                                                                  | Figure 2c   |
|                                                                                | The set of all pairs $\left(s^{Root} \left\{ \hat{M}(b) \right\} \right)$                              | Section R7, |
| $\mathbf{\Psi} \left[ \alpha_{[s_1, s_2, \dots, s_{N^X}]}, \mathbf{I} \right]$ | The set of an pairs, $\begin{pmatrix} 3 & , \end{pmatrix} \begin{pmatrix} M(0) \\ f_T \end{pmatrix}$ , | above       |
|                                                                                | defined on $T$ that are consistent with                                                                | Eq.(R7.4);  |
|                                                                                | the MSA, $\alpha[s_1, s_2,, s_{N^X}]$ .                                                                | above       |
|                                                                                |                                                                                                        | Eq.(SM-4.4) |
| Ω                                                                              | An alphabet, or the set of all possible                                                                | Section R1  |
|                                                                                | residues (such as 4 bases for DNA or 20                                                                |             |
|                                                                                | amino acids for proteins).                                                                             |             |
| $\omega_x (\in \Omega)$                                                        | The residue at the $x$ -th site of a sequence.                                                         | Section R1  |
| $\vec{\omega} = \left[\omega_1, \omega_2, \dots, \omega_L\right]$              | An array of residues assigned to the sites of                                                          | Section R1, |
|                                                                                | a sequence (of length $L$ ).                                                                           | Figure 2a   |