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Abstract

Background: Whether or not a mutant allele in a population is under selection is an important issue in population
genetics, and various neutrality tests have been invented so far to detect selection. However, detection of negative
selection has been notoriously difficult, partly because negatively selected alleles are usually rare in the population
and have little impact on either population dynamics or the shape of the gene genealogy. Recently, through
studies of genetic disorders and genome-wide analyses, many structural variations were shown to occur recurrently
in the population. Such “recurrent mutations” might be revealed as deleterious by exploiting the signal of negative
selection in the gene genealogy enhanced by their recurrence.

Results: Motivated by the above idea, we devised two new test statistics. One is the total number of mutants at a
recurrently mutating locus among sampled sequences, which is tested conditionally on the number of forward
mutations mapped on the sequence genealogy. The other is the size of the most common class of identical-by
-descent mutants in the sample, again tested conditionally on the number of forward mutations mapped on the
sequence genealogy. To examine the performance of these two tests, we simulated recurrently mutated loci each
flanked by sites with neutral single nucleotide polymorphisms (SNPs), with no recombination. Using neutral
recurrent mutations as null models, we attempted to detect deleterious recurrent mutations. Our analyses
demonstrated high powers of our new tests under constant population size, as well as their moderate power to
detect selection in expanding populations. We also devised a new maximum parsimony algorithm that, given the
states of the sampled sequences at a recurrently mutating locus and an incompletely resolved genealogy,
enumerates mutation histories with a minimum number of mutations while partially resolving genealogical
relationships when necessary.

Conclusions: With their considerably high powers to detect negative selection, our new neutrality tests may open
new venues for dealing with the population genetics of recurrent mutations as well as help identifying some types
of genetic disorders that may have escaped identification by currently existing methods.
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Background
Whether and how a mutant allele is selected is an import-
ant topic in population genetics, because it, along with the
population size, demography, and the mode and tempo of
mutation, crucially dictates the evolutionary fate of the
mutant allele and/or the polymorphism pattern in the
population (e.g., [1-4]). The type and intensity of selection
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also indicate the functional impact and the evolutionary
history of a mutation and the locus that underwent it. A
number of statistical tests have been developed to detect
selection on mutant alleles (e.g., [5-12]). Most of them are
based on the null-hypothesis that mutants are selectively
neutral [13-17] and are called “neutrality tests.” These
neutrality tests were successful to some degree in
detecting balancing selection (e.g., [18-21]) and positive
selection (e.g., [22-24]). Detection of negative selection, in
contrast, has generally been unsuccessful, probably be-
cause of the weak signals displayed by deleterious mutants
(e.g., [25] and references therein).
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So far, development of tools for population genetics
analyses has centered around the infinite-site model
[26], which suitably describes single-nucleotide polymor-
phisms (SNPs), one of the commonest and most actively
studied types of polymorphisms (e.g., [27-30]). Recent
technological innovations, however, enabled the detec-
tion of another type of polymorphism, namely structural
variations (SVs), including copy number variations
(CNVs) (e.g., [31-35]). These studies have revealed that
SVs are very common in eukaryotic genomes (e.g.,
[36-40]) including the human genome (e.g., [41-43]).
Some of the structurally variant mutations (SV muta-

tions) associated with genomic diseases have long been
known to recur in the human population (e.g., [44]). A re-
cent genome-wide analysis suggested that such “recurrent
mutations” are quite common among CNVs [45]. Recur-
rent mutations are also quite common among inversions,
another well-known type of SV [46]. Assessing the selective
force on each of such recurrent mutations is essential for
estimating its evolutionary and/or medical impacts on the
genome undergoing them. Positively selected (e.g., [47])
and selectively neutral (e.g., [48]) recurrent SV mutations
drive genome evolution. Negatively selected recurrent SV
mutations (reviewed e.g., in [44]), in contrast, will not sub-
stantially contribute to genomic differences between spe-
cies. New identification of such deleterious recurrent
mutations, however, may reveal some disorders whose gen-
etic causes have so far remained elusive.
In this study, we attempt to detect negative selection

on recurrent mutations, such as those generating SVs,
by exploiting the gene genealogy of sampled sequences.
Broadly speaking, our rationale is the following. Al-
though the signal of negative selection on a single muta-
tion event may be too weak to be detected, the
synergistic effect of the signals from multiple mutation
events of a specific type might become strong enough to
enable detection. Therefore, if the genealogy of sampled
sequences reveals recurrent mutation events, we may be
able to detect negative selection on the mutants.
To validate this idea, we conducted an extensive com-

puter simulation analysis. In the analysis, we first simu-
lated recurrent mutations under different conditions in a
population with a constant size of 10,000 and in popula-
tions that expanded from a bottleneck, all without re-
combination, using a coalescent simulator, msms [49].
Then we examined the ability of our new neutrality tests
to correctly detect negative selection on recurrent muta-
tions at each simulated locus. Our computer simulation
analyses demonstrated that our new tests can correctly
detect negative selection with high true-positive rates in
constant-size population, and at moderate true-positive
rates in expanding populations. This gives us some hope
that our new neutrality tests may provide a useful means
for real data scans to detect deleterious recurrent
mutations, and also opens the possibility of further de-
veloping methods to address some outstanding issues,
such as recombination and population substructure, that
could not have been dealt with in this study.
Our new tests require an algorithm to map mutation

events on a gene genealogy at the recurrently mutating
locus. In this study, the genealogy is reconstructed from
SNPs flanking (or residing within) the locus in question.
For this purpose, we also developed a new maximum
parsimony algorithm that overcomes a problem inherent
in any traditional tree reconstruction algorithm coupled
with any traditional parsimony-based mutation mapping
algorithm, which is the tendency to overestimate the
number of mutation events if the genealogy is inferred
from SNPs (see Methods).

Subjects of our new neutrality tests
Before going into the details of our methods, we would
like to clarify what our new neutrality tests are intended
for. In principle, our new tests are aimed at detecting
negative selection on any type of recurrent mutations
that satisfy the following two conditions: (i) the subject
mutations in a test share some features clearly distin-
guishable from other mutations, especially neutral SNPs;
and (ii) sequences with subject mutations can be sub-
classified at least approximately into classes of shared or-
igins (i.e., classes of identical-by-descent mutants) by
some means, such as the genealogy of sequences, identi-
fying characteristics, and/or exact locations.
Our original purpose was to judge whether recurrent

mutations at each structurally variant (SV) locus are dele-
terious or not, using the sequence genealogy reconstructed
with SNPs to identify the recurrent mutation events. SV
mutations often have rates θμ (≡4Nμ) ∼ 1 (e.g., [44,45],
where N is the (effective) population size and μ is the mu-
tation rate per haploid locus per generation). Occasionally,
θμ>10 [45]. A second conceivable kind of subject is a set
of mutations at a micro-satellite locus, which are known
to occur at a very high rate, with θμ typically ranging from
1 to 100 (see e.g., [50]).
A third kind of subject would be a class of mutations

that satisfy two conditions: (i) they occurred in a region,
such as in a haplotype block, that consists of sites reason-
ably linked with one another; and (ii) they exhibit
suspected signs of functional loss or impairment (e.g., in-
sertions, frame-shifting indels, nonsense point mutations,
and mutations on signals of splicing or gene expression)
of a putative gene, such as the one predicted by a genome-
wide annotation. The new tests on this class may be useful
for inferring whether or not a putative gene is functional,
especially when there are no other data to ascertain its
purported functionality (see also Discussion).
Although the methods described in this paper are

intended for applications to simple SV mutations, other



Figure 1 (See legend on next page).
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Figure 1 Impact of selection on allele frequency spectrum and gene genealogy in the infinite-site model. Panels A, C, and E are
schematic allele frequency spectra (AFSs) of the infinite-site model under selective neutrality, positive selection, and negative selection,
respectively. Bar graphs are “observed” spectra, and dashed lines are expectations under selective neutrality. Panels B, D, and F are schematic
genealogies of n (= 10) sampled sequences that contain a mutation that is selectively neutral, positively selected, and negatively selected,
respectively. Open circles are wild type and selectively neutral mutant sequences (or derived alleles). Shaded circles represent mutant sequences
that are positively or negatively selected. A lightening bolt represents a mutation event that gave rise to the mutant sequence(s) in each sample.
We can see that it is harder to distinguish a single negatively selected mutation event (E,F) from a neutral one (A,B) than to distinguish a single
positively selected mutation event (C,D) from a neutral one, because common features of negatively selected mutations are also quite common
among selectively neutral mutations. (See Methods for details).
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potential subject mutations, such as the ones mentioned
above, could also be examined by our new neutrality
tests, as long as we can define appropriate null models.

Methods
Detecting negative selection on recurrent mutations
using gene genealogy (I): Theoretical rationale and test
statistics
Traditionally, detecting negative selection on a mutant
allele has been difficult in a population genetics frame-
work (e.g., [25,51-55]; but see [56]). Let us first explain
why this is the case. A common way to detect selection
is to compare a test statistic to its distribution under the
null hypothesis of selective neutrality (e.g., [5-12]). If the
test statistic deviates significantly from the bulk of the
null-distribution, the mutant is deemed to be under se-
lection. This strategy has been somewhat successful in
detecting positive or balancing selection [18-24], because
these selection regimes skew the mutant allele frequency
spectrum (AFS) toward high mutant allele frequencies
(e.g., Figure 1C), which occur with low probabilities under
the selectively neutral infinite-site model (Figure 1A). In
terms of a gene genealogy (Figure 1B), we can also say that
such selectively positive mutants show strong signals be-
cause they often account for a large proportion of sampled
sequences (Figure 1D).
Negative selection, on the other hand, skews the mutant

AFS toward low frequencies (Figure 1E), which are highly
populated even under selective neutrality (Figure 1A). For
example, consider the proportion of singleton mutant sites
out of all polymorphic sites when n sequences are sam-
pled. Under the selectively neutral infinite-site model [26]
in a constant-size population, it is approximately given by

[7,57]: 1 þ 1
n−1Xn−1

k¼1

1
k

, which is ~19.5% when n=100, and ~10.2%

even when n=10,000. Therefore, even in the extreme case
in which a deleterious mutant only leaves a single off-
spring among as many as 10,000 sampled sequences, the
signal of negative selection cannot acquire the statistical
significance of less than 5%. (Of course, an individual car-
rying a negatively selected mutation may not have any off-
spring at all. We will not discuss such a case because our
methods only work with observed mutant alleles.) In terms
of gene genealogy, we can say that a deleterious mutant
modifies the shape of the genealogy only modestly, if any
(e.g., [51-55]), because such a mutant tends to occupy only
the tip of the genealogy, with fewer offspring lasting for
shorter times than neutral ones (Figure 1F). These charac-
teristics have prevented individual events of deleterious
mutations from being detected via population genetics
methods (e.g., [25] and references therein; but see [56]).
However, the situation is totally different if mutations

of a particular type occur recurrently across the gene ge-
nealogy. Let us consider a case where M(>1) mutation
events of the same type are detected on the genealogy of
n sampled sequences (Figure 2). If the mutants are se-
lectively neutral, then it is quite likely that at least one of
the mutation events resulted in substantially more than
one sampled mutant (Figure 2A). In contrast, if the mu-
tants are strongly selected against, it is likely that each of
the M detected events only left one sampled mutant
(Figure 2B) or a few at most. To roughly estimate the
probability that each of all the M events resulted in only
one mutant in the sample, let us assume that the events
are mutually independent and that there is no back muta-
tion. Then, for each neutral mutation, the probability that
it resulted in only one sampled mutant should be approxi-
mately given by the relative frequency of true singletons in

the infinite-site model,
Xn−1
k¼1

1
k

 !−1

, because the number of

resulting mutants should be determined only by the loca-
tion of the mutation event in the gene genealogy but
should not depend on other characteristics of the muta-
tion (under the current assumption). Thus, assuming also
that the M mutation events do not interfere with one an-
other, the probability that all the mutation events resulted
in only one sampled mutant each under selective neutral-
ity will be roughly approximated by:

Xn−1
k¼1

1
k

 !−M

:

Even with n=100, for example, the probability is ~3.7%
when M=2, and ~0.7% when M=3, enabling us to detect



Figure 2 Selectively neutral and negatively selected recurrent mutations mapped on gene genealogy. Panels A and B schematically
illustrate recurrent mutations that are selectively neutral and negatively selected, respectively, mapped on genealogies of n (=14) sequences. M=3
mutation events of the same nature are assumed to have occurred along each genealogy. When the mutations are neutral (A), at least one of
them is likely to result in substantially more than one mutant in the sample. When the mutations are negatively selected (B), in contrast, it is
likely that every mutation event leaves very few (often one) sampled mutant(s), and the mutant lineages are usually short-lived. NOTATION. In
both panels, open and shaded circles represent selectively neutral and negatively selected sampled sequences, respectively. A lightening bolt
denotes a mutation event.
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negative selection with a sufficient statistical significance.
In actual situations, however, the mutation events may
interfere with one another, deviating the actual probabil-
ity from the rough estimation above, and the probability
function will depend on the “mutation kinetics,” i.e.,
possible genetic states and the rates of mutations be-
tween the states. Besides, M will decrease as the negative
selection becomes stronger and as the rate of mutation
becomes smaller. Thus, it is not easily predictable how
widely applicable our new tests will be. We, therefore,
conducted an extensive simulation analysis to examine
the actual detection powers of our new tests, as well as
their applicable range in the parameter space of muta-
tion rates and selection intensity.
Based on the above rationale, we devised two test sta-

tistics. One is the size of the most common class of
identical-by-descent mutants in a sample (MaxD), which
is tested conditionally on the number of forward muta-
tions from the ancestral state to the mutant state, M,
that were mapped on the genealogy. This statistic is de-
noted by MaxD|M. The other statistic is the total number
of mutants in the sample (TotD), again tested condition-
ally on M. This statistic is denoted by TotD|M. The first
statistic is somewhat reminiscent of the test statistic in
Ewens’ test [5]; their similarities and crucial differences
will be explained in Discussion. To calculate these test
statistics for each subject locus, we need to know the
numbers M and MaxD. These are inferred by using a ge-
nealogy of the sampled sequences.
Detecting negative selection on recurrent mutations
using gene genealogy (II): Overall procedure
A flowchart for the procedures employed in the new
tests is shown in Figure 3. We first need to sample se-
quences of a locus where recurrent mutations are
expected, such as an SV region or a microsatellite, from
multiple individuals. Then an allelic state at the locus is
assigned to each of the sampled sequences. To infer the
genealogy of the sampled sequences, we will use SNPs
that either reside in the locus itself or are linked to it. In
this study, we create two input data sets by computer
simulations, one under selective neutrality and the other
under negative selection.
After the input data are obtained, we first infer the ge-

nealogy of the sampled sequences using the SNPs [step
(a) in Figure 3]. Second, based on the inferred genealogy,
we enumerate the most parsimonious mutation scenar-
ios that will realize the allelic states of the sampled se-
quences with a minimum number of mutations [step
(b)]. Third, for each mutation scenario, we will calculate
the two test statistics, MaxD|M and TotD|M [step (c)].
Fourth, the statistics calculated for the mutation scenar-
ios based on selectively neutral loci will be gathered to
constitute the “empirical null-distributions” of the statis-
tics [step (d)], which will in turn be used to assign the P-
values to each locus that was simulated under negative
selection [step (e)]. Finally, the results of such statistical
tests will be summarized to evaluate the performance of
our new tests [step (f )].



Figure 3 Overall flowchart of the simulation analysis in this study. See Methods for details (o) and (a)-(f) designate steps in the
overall procedure.
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In the following sections, we describe the components
of the procedure in more detail.

Simulations to generate sequence sets under a constant-
size population
Using the msms coalescent simulator [49], we created a
large input dataset of simulated sequence samples, each
consisting of n (= 20, 50, 100, or 200) sequences of a re-
currently mutating locus accompanied by S (= 50) neutral
SNPs (Figure 4A), sampled from a constant-size popula-
tion of N (= 10,000) diploid individuals. All simulations
were done with no recombination. msms simulates SNPs
under the infinite-site model [26] (Figure 4B), and the re-
current mutations at the locus under the two-state model
[58], with “a“and “A“denoting the wild-type (ancestral)
and mutant (derived) states, respectively (Figure 4C and
D). In Figure 4, the wild-type state and the mutant state
are single-copied and duplicated, respectively, at the SV
locus. Black and red ID numbers in Figure 4 are assigned
to sequences with the wild-type state and those with the
mutant state, respectively. Let μ and v denote the forward
and backward mutation rates (per locus per haploid gen-
ome per generation), respectively (Figure 4C), and
θμ (≡4Nμ) and θv (≡4Nv) represent the rescaled mutation
rates. We used the following mutation rates:
Forward mutation rate: θμ = 10− 1, 10− 1/2, 1 (= 100),

10+ 1/2, 10+ 1;
Backward/forward ratio: v=μ ¼ 0; 1

2; 1; 2; 3.
Throughout this study, we employed an additive (or

genic) selection scheme. The relative fitness values of
the ancestral homozygote, heterozygote, and derived
homozygote were 1, 1+s, and 1+2s, respectively.
σ (≡ 4Ns) denotes the rescaled selection coefficient. We
used the following selection coefficients:

σ ¼ 0 neutralð Þ; −10þ1; −10þ3=2; −10þ2; −10þ5=2:

For each of the 4×5×1=20 combinations of n,v/μ, and
σ=0 for selectively neutral models, we simulated 10,000
samples with θμ=10

-1, 5,000 samples with θμ=10
-1/2, 3,000

samples with θμ=1, 3,000 samples with θμ=10
+1/2, and

1,000 samples with θμ=10
+1. For negatively selected

models with σ<0, we only used v/μ=0, 1, 3. For each of the
4×5×3×4=240 combinations of n, θμ, v/μ, and σ<0, we sim-
ulated 1,000 samples. It should be noted that the simula-
tions were conducted without regard to the allelic states at
the recurrently mutated locus. Thus, the simulated sam-
ples include those that could not capture recurrent muta-
tions within the genealogy, in addition to those that could.

Inferring gene genealogies and mutation scenarios (brief
description)
The genealogy among the sequences in each simulated
sample was first inferred via the Neighbor-Joining (NJ)
method [59] using the number of SNP sites with different
states as a pairwise distance between two sequences. Sec-
ond, we removed interior branches not supported by any
SNP site (Additional file 1: Figure S1F). Third, we placed a
root at the mid-point between the most distant pair of se-
quences. Fourth, because all existing parsimony algorithms



Figure 4 Schematic illustration of simulation to generate input data. Panel A illustrates a simulation output, which will become an input
data to be fed into various neutrality tests. It consists of n sequences sampled from a population, and each sequence is composed of an SV locus
flanked by S SNP sites. (In this example, n = 8 and S = 10.) B. Flanking SNPs are simulated according to the infinite-site model, which guarantees
that each SNP site underwent only one mutation (yellow lightening bolt) along the sequence genealogy. The panel shows the mutation at the
SNP site on the immediate left of the SV locus (colored cyan and magenta). C. The SV locus is simulated according to the two-state model of
recurrent mutations. The character “a“denotes the wild-type (or ancestral) state (here a one-copy state represented by a thick black arrow), and
the character “A“denotes the mutant (or derived) state (here a two-copy state represented by two thick red arrows). The forward and backward
mutation rates per generation are denoted by μ and v, respectively. D. The SV states in this example were generated by two forward mutations
(red lightening bolts) and a backward mutation (blue lightening bolt) along the genealogy, resulting in m = 3 sampled mutants (red
ID numbers).
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(e.g., [60,61]) may overestimate the number of mutations
under some circumstances (Additional file 1: Figure S1G),
we mapped mutation events at the recurrently mutating
locus onto the resulting “SNP-supported tree” by using a
new maximum parsimony algorithm that we have espe-
cially designed for this purpose. The new algorithm enu-
merates all possible mutation scenarios that could result in
the minimum number of mutations, each accompanied by
additional interior branches necessary to realize the
scenario (Additional file 1: Figure S1H). The section “In-
ferring Gene Genealogies and Mutation Scenarios (Ration-
ale)” of Supplementary methods in Supplementary Notes
(Additional file 1) describes the rationale behind this new
parsimony algorithm and our genealogy reconstruction
method. Additional file 2 is dedicated entirely to a detailed
description of this new parsimony algorithm.
New statistical tests to detect negative selection
Given an empirical cumulative null-distribution for
MaxD|M or TotD|M as defined by Equations (S5a,b) in
Supplementary methods in Additional file 1, we can de-
fine the empirical P-value. When a parsimonious sce-
nario for a sequence set, which is in general under
selection, has MaxD|M = xObs, the empirical P-value of
the scenario under the “null-hypothesis,” Y, is:

P E scenario with MaxD M ¼ xObs
�� �

≡ PE
0 MaxD M≤�xObs Yj �:����

ð1aÞ

To be conservative, we defined �xObs as xObs if it is in
the domain of the null distribution, or otherwise the
smallest value of MaxD|M among those greater than xObs



Ezawa et al. BMC Genetics 2013, 14:37 Page 8 of 18
http://www.biomedcentral.com/1471-2156/14/37
in the domain of the null distribution. Similarly, the em-
pirical P-value of a scenario with TotD|M = xObs under
the “null-hypothesis,” Y, is defined as:

PE scenario with TotD M ¼ xObs
�� �

≡ PE
0 TotD M≤�xObs Yj �:����

ð1bÞ
Then we estimated the empirical P-value of a sequence

set, which the new neutrality test actually uses, with the
average of the empirical P-values over parsimonious sce-
narios:

P E sequence setð Þ ¼
∑

parsimonious scenarios for the sequence set
PE scenarioð Þ

# parsimonious scenarios for the sequence setf g
ð2Þ

where PE(scenario) is (1a) and (1b), when the test statis-
tic is MaxD|M and TotD|M, respectively.

Performance tests under expanding population
We also examined the performance of our new statistical
tests on sequence data sets simulated under a population
that expanded recently. As an expanding population, we
used a simple model that broadly reproduces the European
demography inferred by [62]. In terms of forward time
evolution, the model population begins with an ancestral
(bottleneck) population at equilibrium with the constant
size NB=2100. Then the population is shrunk to
NEU0=1000 at TEU-AS=21200 years ago (when it sepa-
rated from the Asian population), and then it expands
exponentially. For the expansion rate, r, we used the
maximum-likelihood estimate for the European popula-
tion, rEU=4.0×10

-3 per generation and a generation time
of 25 years. We also used the lower and upper bounds
of the parametric bootstrap bias-corrected 95 % confi-
dence interval, rEU=2.6×10

-3 and 5.7×10-3 per gener-
ation [62].
Other parameters were basically the subsets of those

used for the performance tests under the constant-size
population. A caveat is that population genetic parameters
are rescaled so that their raw values (but not their
population-scaled values) match the values for the constant
population of size N=10000. More specifically, we used
sample sizes of n = 100 and 200, backward/forward ratios
of v/μ = 0, 1, and 3, and selection coefficients equivalent to
σ = 0 (neutral), − 10+ 3/2, − 10+ 2, − 10+ 5/2. As for the
forward mutation rate, θμ, we used the same exact setting
as for the constant-size population.
We conducted two performance tests. First, we exam-

ined the performance of our new tests just as we did
under the constant-size population, assuming that the
expansion rate r=rEU was inferred exactly. Second, to
examine the effect of erroneous inference of r=rEU, our
new tests with the empirical null-distributions computed
with rEU=4.0×10
-3 were applied to the sequence sets

simulated under rEU=2.6×10
-3 and rEU=5.7×10

-3.

Results
Performance of our new parsimony algorithm
The new neutrality tests as described in this paper de-
pend on a new parsimony algorithm that we developed
to map mutation events on the sequence genealogy.
Therefore, we first compared the new parsimony algo-
rithm with traditional tree reconstruction algorithms, in
terms of the accuracy of tree reconstruction. As a repre-
sentative of the traditional tree reconstruction algorithm,
we used the neighbor-joining (NJ) method [59]. We first
note that, under the current situation where a tree is
reconstructed only from sites following the infinite-site
model, the NJ method should infer trees as accurately as
the maximum-likelihood (ML) method, which is known
to be the most accurate under most situations. A prob-
lem is that most traditional tree reconstruction algo-
rithms forcefully infer a fully resolved tree by randomly
inserting (zero-length) branches to “resolve” practically
multifurcated nodes. Our new parsimony algorithm
solves this problem by starting with a multifurcated tree
whose branches are all supported by SNP sites, and fur-
ther resolving phylogenetic relationships by taking ad-
vantage of the recurrent mutations (see Additional files
1 and 2 for details). To make sure that this strategy actu-
ally works, we applied both the NJ method and our new
parsimony algorithm to each sequence set simulated as
detailed in the next subsection, and compared the
reconstructed trees with the true genealogy among sim-
ulated sequences. When the sample size n=100 and v/
μ=1, for example, each NJ tree has 73±5 false-positive
branches (the numbers represent mean±standard devi-
ation), while each tree via our new parsimony has on
average 1±1 false-positive branches. Next we defined the
“additional true-branch rate” as ATP

ATPþFP, where ATP is the
number of true-positive branches not supported by
SNPs, and FP is the number of false-positive branches.
Under these conditions, the additional true-branch rate
of our new parsimony algorithm (0.378±0.298) was more
than five times higher than that obtained by the NJ
method (0.071±0.035). Results were similar under other
conditions (as long as the sample size was quite large).
Additional file 1: Tables S2 and S3 show the results in
more details.
Frequency of recurrent mutations captured by gene
genealogy
Because our new tests are only useful when recurrent mu-
tations are detected on a genealogy of sampled sequences,
we first examined the relative frequencies of recurrent mu-
tations that can be captured by gene genealogies out of the
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cases where the recurrently mutating locus is polymorphic.
Table 1 and Additional file 1: Tables S4 and S5 summarize
the relative frequencies for the backward/forward ratios,
v/μ = 0, 1 and 3, and the numbers of sampled sequences,
n = 100, 50 and 200. Roughly speaking, deletions should
typically have v/μ = 0, because undoing a deletion is usually
impossible. Inversions should have v/μ around 1 because
of the symmetry between forward and backward muta-
tions. Duplications are known to have v/μ≥2 (e.g., [63]), so
we chose v/μ = 3 as a representative value. As expected,
the frequency of detected recurrent mutations increases as
the mutation rate increases, as the negative selection be-
comes weaker, and as the sample size increases. For v/μ =
0, the “NA” marks are seen at high forward mutation rates
(θμ ≥ 10

+ 1/2) and at weak negative selection (σ ≥ − 10) (sec-
tion A of the tables). This is because these cases have no
back mutations to prevent the frequent forward mutations
from fixing the mutant state in the population.
Although we also examined the simulations with n = 20,

their gene genealogies rarely captured the recurrent muta-
tions unless the forward mutation rate is extremely high
(θμ ≥ 10). Thus, we judged that our new test is useful only
when the sample size is fairly large, and focused on the case
of n = 100, unless otherwise stated.
Table 1 Relative frequencies of recurrent mutations
captured by gene genealogy, out of polymorphic loci

A. v/μ=0.

θμ σ=0 (neutral) σ = − 10 σ = − 103/2 σ = − 102 σ = − 105/2

10-1 0.091 0.141 0.071 0.014 0.000

10-1/2 0.231 0.216 0.190 0.057 0.026

1(=100) 0.470 0.625 0.467 0.238 0.102

10+1/2 NAa 0.856 0.905 0.648 0.300

10+1 NA NA 0.995 0.981 0.759

B. v/μ=1.

θμ σ=0(neutral) σ = − 10 σ = − 103/2 σ = − 102 σ = − 105/2

10-1 0.097 0.080 0.029 0.041 NA

10-1/2 0.306 0.212 0.165 0.082 0.026

1(=100) 0.744 0.668 0.463 0.263 0.104

10+1/2 0.986 0.966 0.898 0.628 0.313

10+1 1.000 1.000 1.000 0.980 0.729

C. v/μ=3.

θμ σ=0(neutral) σ = − 10 σ = − 103/2 σ = − 102 σ = − 105/2

10-1 0.170 0.098 0.039 0.027 NA

10-1/2 0.434 0.226 0.159 0.073 0.042

1(=100) 0.797 0.631 0.412 0.215 0.104

10+1/2 0.987 0.963 0.864 0.622 0.338

10+1 0.999 0.999 0.997 0.961 0.713

NOTE. The results are shown for sets with n=100 sampled sequences each. v/μ
is the backward/forward ratio of mutation rates. θμ(≡ 4Nμ) is the rescaled
forward mutation rate. σ(≡ 4Ns) denotes the rescaled selection coefficient.
a “NA” is assigned to a category with less than 30 polymorphic loci.
Number of mutations mapped on the gene genealogy
The horizontal bar graphs (spectra) in Figure 5 show the
proportions of the parsimonious scenarios classified with
the number of forward mutations mapped on each gene
genealogy (M), with various combinations of the forward
mutation rate (θμ) and the selection intensity (σ), under
fixed values of v/μ (= 1) and n (= 100). We can see that
the classes with many mutations increase in proportion
as the mutation rate becomes higher and the negative
selection becomes weaker. Another noticeable point is
that highly deleterious mutations (e.g., with σ = − 10+ 5/2)
that are quite frequent (e.g., with θμ = 10+ 1/2, 10+ 1) have
spectra of mutation numbers very similar to those of se-
lectively neutral mutations with modest mutation rates (e.
g., θμ = 10− 1/2, 100). This phenomenon is understandable
because the average number of mutations should correlate
positively with the mutation rate and negatively with the
selection coefficient. The mutation-number composition
depends quite slightly on v/μ (compare Figure 5 with Add-
itional file 1: Figures S2 and S3). These results suggest that,
unless we know the mutation rates (i.e., θμ and v/μ) in ad-
vance, it is dangerous to use a statistic for detecting nega-
tive selections that strongly correlates with M. Such a
statistic would confuse the effects of mutation rates with
those of selection. This led us to the new test statistics,
MaxD|M and TotD|M, which are conditional on M.

Distributions of new test statistics under selective
neutrality and negative selection
To detect negative selection on recurrent mutations, we
devised two test statistics, MaxD|M and TotD|M. The
statistic MaxD|M is the size of the most common class
of identical-by-descent mutants in the sample (at the re-
currently mutating locus) inferred with a genealogy
(MaxD), tested conditionally on the number of forward
mutation events (M). The statistic TotD|M is the total
number of mutants in the sample (TotD(≡m)), again
tested conditionally on M. Briefly, these test statistics
are expected to be smaller under negative selection than
under neutrality, because the descendants of deleterious
mutants are unlikely to proliferate. And, because M is
fixed, the statistics are expected to be mostly immune to
the problem discussed in the last section.
Figure 6 and Additional file 1: Figure S4 show the dis-

tributions of the new test statistics, MaxD|M and TotD|M,
respectively, under selective neutrality (σ=0) and differ-
ent combinations of mutation rate parameters. When
the mutation rate is low (θμ ≤ 10− 1/2), the distributions
depend little on θμ or v/μ. This is understandable given
that mutation events are likely to be sparse on the ge-
nealogy and that backward mutations should impact the
distributions only slightly, if at all, under low mutation
rates. As the mutation rate becomes larger (θμ ≥ 100 (=1)),
small values of the test statistics get less and less



Figure 5 Composition of the number of mutations at each recurrently mutating locus. This figure is for a fixed backward/forward ratio
(v/μ = 1) and a fixed sample size (n = 100). The composition of the number M of forward mutations mapped on a genealogy, among recurrently
mutating loci showing polymorphism, is shown under various forward mutation rate (θμ) and the selection intensity (σ). Panels A, B, and C give
results with σ=0, σ = − 10+ 3/2, and σ = − 10+ 5/2, respectively. In each panel, a horizontal bar shows the composition for a value of θμ specified
on the left. In each horizontal bar, white, red, blue, yellow, green and black rectangles represent the proportions of mutation loci with M = 1, 2, 3,
4, 5–9, and 10-, respectively.
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common, and this tendency is conspicuous for smaller
ν/μ values. Probably, this is partly because parsimony
methods tend to underestimate the number of mutation
events as the mutation rate increases. Nevertheless, such
dependence on the mutation rate will only make our
new test statistics more conservative (in terms of false
positive rate). We also examined the distributions of
MaxD|M at strongly deleterious loci with σ=-100 (Add-
itional file 1: Figure S5). We can observe that the cumu-
lative distributions rapidly converge to 1, and the
comparison with the null-distribution (Figure 6) implies
a high yield. Taken together, these properties of the dis-
tributions of MaxD|M and TotD|M indicate that they are
not only fairly powerful “neutrality tests,” but also robust
against variation in the mutation rate.
Performance of our new neutrality tests to detect
negative selection on recurrent mutations
In the above section, the distributions were obtained
under fixed values of θμ and v/μ. We have to remember,
however, θμ is usually unknown. Although v/μ may be fig-
ured out to some extent if the type of the recurrent muta-
tion is known, this may not always be the case. Thus, we
defined the null-distributions of the test statistics, MaxD|

M and TotD|M, by assuming that the forward mutation rate
is power-law distributed, i.e., P [ θμ >X ] =A ⋅X− α, where
α is the exponent that specifies the power-law. Recent
genome-scale data analyses on CNVs indicated that a ma-
jority of CNV loci show low rates, satisfying θμ<0.1 (e.g.,
[42]), and that quite a large number of CNV loci have high
rates, satisfying θμ>1 or even θμ>10 (e.g., [45]). Power-law



Figure 6 Cumulative distributions of our new test statistic, MaxD|M, under selective neutrality. Each panel shows the cumulative
distributions of our new test statistic, MaxD|M, for v/μ specified by the column and θμ specified by the row. The selection coefficient is fixed at
σ=0 (selectively neutral), and the sample size is fixed to be n = 100. In each panel, a thin black line shows the cumulative distribution for M =1 as
a control, and bold lines colored red, blue, and orange represent the distributions for M = 2, 3, and 4, respectively. “NA” and missing lines indicate
that the categories in question did not gather enough numbers of simulated loci.
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Table 2 False positive and true positive rates via TotD|M,
when v/μ is not known in advance

A. v/μ=0.

θμ σ=0(neutral) σ = − 10 σ = − 103/2 σ = − 102 σ = − 105/2

10-1 0.055 0.063 0.182 NA NA

10-1/2 0.059 0.052 0.162 0.333 NA

1(=100) 0.005 0.097 0.294 0.521 0.615

10+1/2 NAa 0.021 0.208 0.543 0.774

10+1 NA NA 0.008 0.488 0.699

B. v/μ=1.

θμ σ=0 (neutral) σ = − 10 σ = − 103/2 σ = − 102 σ = − 105/2

10-1 0.057 0.063 NA NA NA

10-1/2 0.038 0.175 0.203 0.625 NA

1(=100) 0.028 0.110 0.339 0.519 0.739

10+1/2 0.009 0.058 0.266 0.497 0.706

10+1 0.000 0.002 0.081 0.527 0.728

C. v/μ=3.

θμ σ=0 (neutral) σ = − 10 σ = − 103/2 σ = − 102 σ = − 105/2

10-1 0.051 0.000 NA NA NA

10-1/2 0.037 0.118 0.351 0.500 NA

1(=100) 0.037 0.140 0.240 0.528 0.815

10+1/2 0.050 0.131 0.293 0.547 0.746

10+1 0.078 0.142 0.293 0.585 0.734

NOTE. Here, n=100 and α = 1, as well as 5% nominal significance level, are
fixed. The tables show proportions of loci that tested positive via TotD|M out of
those whose gene genealogies revealed recurrent mutations. ν/μ is the
backward/forward ratio of mutation rates. θμ(≡ 4Nμ) is the rescaled forward
mutation rate. σ(≡ 4Ns) denotes the rescaled selection coefficient.
a “NA” is assigned to a category with less than 10 loci with revealed
recurrent mutations.
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distributions could interpolate such observations well. We
used the values α = 0.5, 1, and 2, which seem to span a
reasonable range. Relative weights of θμ are shown in
Additional file 1: Table S1. The exponent α = 0.5 seems to
give proportions somewhat similar to those obtained by
[45] for CNV loci with high mutation rates, and α = 2
consists almost exclusively of the lowest mutation rate
(θμ = 0.1). The performance of our new tests remained al-
most unchanged across α = 0.5, 1, and 2 (compare e.g.,
Table 2 with Additional file 1: Tables S6 and S7). So, we will
only show the results for α = 1. Regarding v/μ, we prepared
two different null-distributions: one with a fixed value of
v/μ that is assumed as known in advance, and the other
with the null-distribution averaged over unknown values of
v/μ. The specific definitions of the null-distributions are de-
scribed in Methods and in Additional file 1. Surprisingly,
our new tests with unknown v/μ performed almost as well
as those with known v/μ (compare e.g., Table 2 with
Additional file 1: Table S8). Thus, in the following, we will
only show the results when v/μ is unknown.
With the null-distributions at hand, we examined the

performance of our new tests by applying them to the
samples of sequences simulated under negative selection.
We chose the nominal significance level of 5%. To figure
out the actual rate of false-positives (i.e., type I errors),
we also applied the tests to sequence samples simulated
under selective neutrality. Overall, the two test statistics
performed similarly well, with TotD|M performing
slightly better than MaxD|M (compare e.g., Table 2 with
Additional file 1: Table S9). Thus, henceforth, we will only
show the results for TotD|M. Table 2, Additional file 1:
Tables S10 and S11 show the proportions of simulated
samples with size n = 100, 50, and 200, respectively, that
tested positive via TotD|M (under α = 1 and using null-
distributions for unknown v/μ), out of the samples whose
gene genealogies identified recurrent mutations. The pro-
portions could be regarded as true positive rates if the
simulations are under negative selection, and as false-
positive rates if the simulations are under selective
neutrality. Both tests demonstrate high true-positive rates
of ~50-80%, while keeping the false-positive rates down to
around 5% or less, for strongly negative selection (with
σ = − 10+ 2, − 10+ 5/2) and with large sample sizes (n = 100
and 200) (Table 2 and Additional file 1: Table S11). Al-
though the true positive rates somewhat dropped for
moderately negative selection (with σ = − 10+ 3/2), still 10-
30% of the cases were detected. On the other hand, the
true positive rates for weakly deleterious mutations (with
σ=-10) were marginal, hovering around 10% or less. Thus
our new tests will have little power when detecting weak
negative selection on recurrent mutations, no matter how
frequently the mutations occur. The tests suffered low
positive rates also under weak to moderate selection (with
σ ≥ − 10+ 3/2) with a very high mutation rate (with θμ = 10),
probably because independent forward mutations were er-
roneously merged on incompletely resolved gene geneal-
ogies, which is inevitable. Or it may also be because an
excessively high number of forward mutations could in
principle prevent TotD|M and MaxD|M from clearly
distinguishing between deleterious mutations and select-
ively neutral ones.
For a medium sample size (n = 50), the true-positive

rate is reduced to less than 30% (Additional file 1: Table
S10). This is because the null-distributions of MaxD|M
and TotD|M are “inherently discrete,” namely, their
smallest non-zero probabilities are slightly greater than 5%
for M = 2 when n = 50.

Performance of new neutrality tests under expanding
populations
Populations of many species including humans are
thought to have expanded recently (e.g., [64-67]). The
population growth is known to increase the number of
low-frequency polymorphisms, displaying signals similar
to those of negative selection (e.g., [68-70]). A recent



Table 3 False positive and true positive rates via TotD|M,
when v/μ is not known in advance, under expanding
population (with correct r)

A. r=2.6 × 10-3

θμ σ=0 (neutral) σ = − 103/2 σ = − 102 σ = − 105/2

10-1 0.185 0.125 NA a NA

10-1/2 0.179 0.315 0.500 NA

1(=100) 0.095 0.184 0.352 0.600

10+1/2 0.056 0.141 0.340 0.580

10+1 0.018 0.058 0.283 0.551

B. r=4.0 × 10-3

θμ σ = 0 (neutral) σ = − 103/2 σ = − 102 σ = − 105/2

10-1 0.341 0.333 NA a NA

10-1/2 0.265 0.259 0.516 NA

1(=100) 0.187 0.258 0.509 0.886

10+1/2 0.081 0.210 0.491 0.818

10+1 0.026 0.115 0.408 0.668

C. r=5.7 × 10-3

θμ σ=0 (neutral) σ = − 103/2 σ = − 102 σ = − 105/2

10-1 0.372 0.583 0.833 NA a

10-1/2 0.288 0.376 0.680 NA

1(=100) 0.236 0.423 0.655 0.957

10+1/2 0.080 0.252 0.524 0.780

10+1 0.022 0.119 0.401 0.607

NOTE. Here, n=100, α = 1, and the backward/forward ratio v/μ=1 are fixed. The
nominal significance level is set slightly above the relative frequency of TotD =
2 conditional on M=2. The tables show proportions of loci that tested positive
via TotD|M out of those whose gene genealogies revealed recurrent mutations.
θμ(≡ 4Nμ) is the rescaled forward mutation rate. σ(≡ 4Ns) denotes the rescaled
selection coefficient. Here the null distributions are based on the correct
recombination rate r (per generation).
a “NA” is assigned to a category with less than 10 loci with revealed
recurrent mutations.
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trend in population genetic analyses is to incorporate
such demographic effects into the null-distributions, by
inferring the demographic effects independently from a
genome-wide collection of selectively neutral poly-
morphic sites, such as synonymous SNPs [71,72]. Thus,
we also examined the performance of our new neutrality
tests under such settings. We simulated sequence sam-
ples under an expanding population with growth rates of
r=4.0×10-3, 2.6×10-3, and 5.7×10-3 per generation, which
respectively correspond to the maximum likelihood esti-
mate, the lower- and the upper-bounds of 95% confi-
dence interval inferred for the European population [62].
Using the samples simulated under selective neutrality,
we constructed empirical null distributions under each
growth rate. We first applied our new statistical tests to
the samples simulated under negative selection and
under the same growth rate that generated the null dis-
tribution. Because the null-distributions of MaxD|M and
TotD|M are discrete, and because the allele frequency
spectrum under an expanding population skews toward
rare alleles, we expected (and confirmed) that a fixed
nominal significance level of 5% will result in a low de-
tection rate (data not shown). Thus, we set the nominal
significance level at infinitesimally above the probability
of TotD=2 (or equivalently MaxD=1), conditional on
M=2. The new tests exhibited reasonably high detection
rates (Table 3). The false positive rates were reasonably
low for high mutation rates. Although false-positive rates
were quite high for low mutation rates, this may not
cause a serious problem, because the detection rates
were 2 to 3 fold higher than the false positive rate, and
because it is only very rarely that polymorphic loci with
low mutation rates show recurrent mutations among the
samples (Additional file 1: Table S12). For example, only
7.0-13.3% of neutral polymorphic loci with θμ=0.1 had
M≥2. Still, some other statistics that help roughly infer
θμ or some prior knowledge on θμ could be exploited to
validate the results of the new tests.
In actual data analyses, the estimated population

growth parameter should suffer some uncertainties (see
e.g., [62]). To examine the impacts of such uncertainties,
we applied our new tests on the data sets simulated
under the both ends of the 95% confidence interval,
r=2.6×10-3 and 5.7×10-3, using the null distributions esti-
mated from simulations of neutral mutations with the
above MLE, r=4.0×10-3. Our new tests retained almost
the same performance as those using the correct growth
parameters (Additional file 1: Table S13), demonstrating
that the tests are robust under these uncertainties.

Discussion
In this study, we introduced two new population genet-
ics tests to detect negative selection on recurrent muta-
tions. Our computer simulation analyses demonstrated
high powers of these tests to detect recurrent deleterious
mutations in constant-size populations, and moderate
detection powers in expanding populations. To the best
of our knowledge, this is the first ever attempt to detect
negative selection by using recurrent mutations, and our
tests turned out to be superior to traditional neutrality
tests that do not fare well in this respect. To illustrate
this point, we also applied some widely used traditional
neutrality tests, Ewens’ test [5], the Ewens-Watterson
test [6], and Tajima’s D test [7], to our constant-
population dataset (Additional file 1). We found that
these tests detected selection only slightly better than
expected by chance (Additional file 1: Tables S14, S15
and S16). This is understandable because applying a
traditional neutrality test to SNPs in the flanking regions
of a locus undergoing recurrent deleterious mutations is
tantamount to attempting to detect “background selec-
tion” on a linked genomic region using only information
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from a single locus, which was shown to be very difficult
(e.g., [73]). Of course, out tests will not undermine the
value of these traditional neutrality tests, because they
are known to detect other types of deviations from the
standard neutral population genetic model (see e.g.,
[12,25,74]).

Outstanding issues
We should keep in mind that this study is merely a first
step, because the tests have so far been applied to only
the simplest cases (a selectively neutral background
without recombination in a constant-size population or
a regularly expanding population). For future tests to be
really useful, we will have to examine how robust the
tests are against various confounding factors, such as
population substructure and migration (e.g., [62,75,76]),
background selection, recombination, and mutation kin-
etics. Although such analyses were not conducted in this
study, we may be able to roughly predict the effects of
some of such factors and potential countermeasures.
Recombination will confound the inference of gene ge-

nealogy, possibly causing false-positives e.g., by splitting
the descendant cluster of a forward mutation event, and
false-negatives e.g., by merging the descendant clusters
of two independent mutation events. Such factors may
only have modest effects on our new tests, because our
choice of the number of flanking SNPs (S=50) is similar
to the typical number of SNPs within a haplotype block
in the human genome (e.g., [27,28]), and because mutant
clusters under detectable negative selection are usually
too small for recombination to either split or merge.
Nevertheless, recombination may impact our tests at
least occasionally, especially when the subject locus
spans and/or is flanked by more than one haplotype
block. To be robust under such effects, we will have to
grade up our tests so that they can handle multiple ge-
nealogies arranged along a tested region.
Another issue that should be explored in the future is

the modeling of mutation kinetics. Although we found that
the test results do not substantially differ across a wide
range of backward/forward ratios, from v/μ = 0 to v/μ = 3,
they are just within the two-state model [58]. Recurrent
mutations could occur more frequently at multistate loci,
which might be describable only by their own particular
models, such as multisite models (e.g., [56]), a step-wise
mutation model [77] or its extended versions (e.g.,
[78,79]). In principle, model misspecification could lead to
erroneous results, so how to assign a correct mutation
model to each locus would be an important issue to study.
Nevertheless, as long as the locus has only two states, or if
its multiple states can be classified into two broad categor-
ies under some objective criteria, the results of our study
should hold.
Relationship with background selection
The words “deleterious recurrent mutations” may be
reminiscent of background selection, whereby deleteri-
ous mutations on a nearly non-recombining genomic re-
gion reduce the regional effective population size and
thus reduce the regional genetic variability as compared
to a freely recombining region (e.g., [73,80-83]). This
mechanism could be related to our new neutrality tests
in at least two different ways: first as a potential subject
of our new tests, and second as a potential noise ham-
pering our tests. These aspects will be discussed in some
details in Supplementary discussion in Additional file 1.
Recently, some complications on background selection
have been revealed (e.g., [84,85]). To fully understand
how our new tests will be impacted by background se-
lection, or more generally the Hill-Robertson interfer-
ence [86], we will need further studies using simulated
data (e.g., [84]) and possibly data on Drosophila genomes
(e.g., [85,87-89]).

Comparing the definitions of our test statistics to those
of traditional tests
One of our test statistic, MaxD|M, is somewhat reminis-
cent of the statistic for Ewens’ test, which is the fre-
quency of the most common haplotype conditional on
the number of haplotypes in the sample (K). The other
test statistic, TotD|M, could be regarded as an analog of
the statistic for the EW test, which is the haplotype
homozygosity conditional on K. Despite the similarities,
whereas the traditional tests detected negative selection
on recurrent mutations at rates that are at best margin-
ally better than that obtained by chance, our new tests
detected negative selection at quite high rates. What
causes this difference?
One big difference between the two groups of tests is

that our tests only count mutant alleles with mutations
whose effects we wish to examine, such as structural
variations, while traditional tests count all haplotypes in-
cluding those not bearing the mutations of interest. Be-
cause deleterious mutants in general account for only a
minority among sampled sequences, haplotypes not
bearing the mutation of interest determine the major be-
haviors of the traditional test statistics, which obscures
the signals of the deleterious mutations. In contrast, our
test statistics, MaxD|M and TotD|M, only contain infor-
mation on the mutation of interest. Therefore, they are
unlikely to be disturbed by stochastic fluctuations affect-
ing other haplotypes.
For theoretical studies of the new tests, it might be

better to have analytical formulae for the null-
distributions. Given the aforementioned similarity be-
tween our tests and Ewens’ and the EW tests, such for-
mulae may be derivable at least under a constant-size
population, by modifying the derivation of the Ewens
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sampling formula [16,17] and/or following a path similar
to but slightly different from that to the equations (8)
and (11) in [90]. The formulas in [90] were derived
under the modified infinite-alleles model with two clas-
ses of alleles, one selectively neutral, the other deleteri-
ous [91,92]. It should be noted that past studies [91,92]
focused on formulas under a fixed number of sampled
deleterious mutants. What we need here, however, are
null-distributions, which must be derived under a fixed
total number of randomly sampled sequences, including
both classes of alleles, and under the selective neutrality
of both classes. (Also, mutations must be turned off be-
tween alleles in the same class.) Once analytical null-
distributions are derived under such a neutral two-class
model, we will be able to define yet another new statis-
tical test similar to Slatkin’s exact test [9,10], by using
the full configuration, (D1,D2,…,DM), of the numbers of
sampled mutants resulting from identified forward mu-
tations. Such an “exact test” might be slightly more
powerful than the two tests proposed in this paper, be-
cause it can partition the sample space more finely.
Once derived, the null-distributions may be relatively
easily extended to an expanding population, whose ef-
fects were also examined in [90].

Extended application of our new neutrality tests
In this paper, we mainly examined the performance of our
new neutrality tests applied to recurrent mutation on a
simple SV locus. However, as briefly explained in the
Background, our new tests could possibly be applicable to
other types of recurrent mutations as long as they satisfy
two conditions: (i) the subject mutations share some fea-
tures clearly distinguishable from other, mostly neutral
mutations; and (ii) sequences with subject mutations can
be sub-classified at least approximately into classes of
shared origins by some means, such as a sequence geneal-
ogy. As a third kind of subject, we mentioned a class of
sites that are lumped together according to putative signs
of functional loss or impairment of a gene locus.
For example, phenylketonuria is a disease caused by

hundreds of types of disabling or malfunctioning muta-
tions on the phenylalanine hydroxylase (PAH) gene
(reviewed e.g., in [93,94]). Our new tests are likely to de-
tect (or rediscover) such diseases (see Additional file 1)
and, by analogy, the tests are also expected to detect puri-
fying selection operating on putative genes with unknown
functions. This might considerably extend the use of our
new tests, because they may help identify cryptic diseases,
or they could help validate putative genes that are auto-
matically annotated e.g., by genome projects. To make
sure that this is true, however, we need to further test their
performance in realistic settings.
It should be noted that the sequence genealogy may

not need be reconstructed when applying our new tests
to this class of mutations, because different mutational
origins are likely to be identified by the locations and
characteristics of the mutations.

Potential use of our new parsimony algorithm to
enumerate mutation scenarios
As a requirement for our new tests, we developed a new
parsimony algorithm that maps a minimum number of
mutations on a genealogy while resolving incomplete
phylogenetic relationships if necessary, given an incom-
pletely resolved genealogy and current states of sequences
at a recurrently mutating locus (Additional file 2). The
algorithm is a modified extension of Sankoff ’s parsimony
algorithm [61] to a multifurcated phylogenetic tree. Al-
though we invented the algorithm in order to define the
MaxD|M and TotD|M test statistics, the algorithm may ac-
tually find wider applications. For example, it may be ex-
tended to infer a finely resolved gene genealogy by
combining fast-evolving characters, such as micro-satellite
polymorphisms, with slow-evolving characters, such as
SNPs in a linked region.

Conclusions
Detecting selection on mutants has been a crucial goal
of population and medical genetics. However, it has been
very difficult to identify negatively selected (deleterious)
mutants via purely population genetics methods, mostly
because deleterious mutants leave only weak molecular
signals that are very difficult to detect. We came up with
the novel idea of synergizing the signals left by recurrent
mutation events on gene genealogy, and devised two sta-
tistics, MaxD|M and TotD|M, to detect negative selection
on recurrent mutations at a subject locus. Our simula-
tion analyses demonstrated that the neutrality tests
based on these two statistics have high powers to detect
negative selection under a constant-size population, and
moderate powers under expanding populations. The
next task will be to examine whether these methods also
work under more realistic population genetics condi-
tions, by including such factors as recombination and
population substructure. Our new neutrality tests can be
used with segmental mutations, such as genome struc-
tural variations and microsatellite mutations, data on
which are expected to increase steadily as experimental
technologies continue to advance. Our tests open new
venues for studying the population genetics of recurrent
mutations, and may become useful in molecular medi-
cine by identifying genomic disorders that may have es-
caped identification by currently existing methods. Most
of the scripts and Perl modules used in this study, in-
cluding the Perl module implementing our new parsi-
mony algorithm to enumerate mutation scenarios, are
packaged in their original forms into Additional file 3 (a
ZIP archive).
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Additional files

Additional file 1. Supplementary notes, which consist of
Supplementary methods, Supplementary discussion, Tables S1- S16,
and Figures S1-S5.

Additional file 2. Detailed descriptions of our new parsimony
algorithm to enumerate parsimonious mutation scenarios on an
incompletely resolved genealogy.

Additional file 3. A ZIP archive that contains the original versions
of a Perl module implementing our new parsimony algorithm, as
well as of Perl and Bourne shell scripts used for our simulation data
analyses to examine the performances of various neutrality tests
including our two new tests. It also contains a README file that
describes how to use the modules and scripts. (The modules and scripts
will run on a Mac OS X terminal. And they should probably run on other
UNIX platforms as well, although we have not tested whether they
indeed will.) The latest version of the modules and scripts, as well as
some null-distributions, can be found in the DENSERM directory at the
FTP repository of the Bioinformatics Organization [95].
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