# Differences

This shows you the differences between two versions of the page.

 — analytic-tutorial [2016/04/13 18:02] (current) Line 1: Line 1: + ===== Analytic Power Analysis ===== + ==== Analytic Power and Sample Size Calculation for Case Control Studies ==== + === LOGIT model === + == Basic example == + To calculate power at given sample size assuming equal case control samples (1000 cases, 1000 controls), at an effect size of odds ratio equals 2 for rare variants, 1 for common variants, evaluated at $\alpha=0.05$:​ + + + spower LOGIT KIT.gdat -a 2 --sample_size 2000 --alpha 0.05 -v2 -o K1AP + ​\\ + To calculate sample size assuming equal case control samples given 80% power and using the same setup as above: + + + spower LOGIT KIT.gdat -a 2 --power 0.8 --alpha 0.05 -v2 -o K1AS + ​\\ + To view results + + + spower show K1AP.csv power* + spower show K1AS.csv sample_size* + ​\\ + == Adjust effect size == + A variable effect model below will assign to rare variants odds ratio $\in(1,​3)$ depending on the MAF of rare variants: + + + spower LOGIT KIT.gdat -a 1 -A 3 --sample_size 2000 --alpha 0.05 -v2 -o K1AP + ​\\ + Adding effects for common variants, fixed to odds ratio 1.2: + + + spower LOGIT KIT.gdat -a 1 -A 3 -c 1.2 --sample_size 2000 --alpha 0.05 -v2 -o K1AP + spower LOGIT KIT.gdat -a 1 -A 3 -c 1.2 --power 0.8 --alpha 0.05 -v2 -o K1AS + ​\\ + == Adjust variant properties and analysis filters == + Now based on the basic example, we change definition for rare variants to MAF > 5%: + + + spower LOGIT KIT.gdat -a 2 --def_rare 0.05 --sample_size 2000 --alpha 0.05 -v2 -o K1AP + ​\\ + Power of the test boosts significantly,​ although it is not a reasonable setup to apply aggregated rare variant analysis to high frequency variants like in this example. There is usually adequate power to detect common variants association when analyzed individually. + + == Set a random proportion of non-causal variants == + It is often the case that not all functional rare variants are directly causal to the phenotype. To add such non-causal "​noise"​ to data and evaluate the impact on power / sample size, we can set a random set of 50% variants to be non-causal (''​-P''​ option) and be included in analysis. Since the assignment of non-causal variant is random, the final estimate should be based on the average of multiple replicates, for example 100 replicates: + + + spower LOGIT KIT.gdat -a 2 --def_valid_locus 3 1000 --sample_size 2000 --alpha 0.05 -P 0.5 -r 100 -v2 -o K1APP + spower LOGIT KIT.gdat -a 2 --def_valid_locus 3 1000 --power 0.8 --alpha 0.05 -P 0.5 -r 100 -v2 -o K1APS + spower show K1APP.csv power power_std + ​\\ + Note that standard deviation for the 100 replicates is also calculated and can be displayed. + + === PAR model === + == Basic example == + To calculate power at given sample size assuming equal case control samples (1000 cases, 1000 controls), at an effect size of PAR equals 5% for rare variants, 1% for common variants, evaluated at $\alpha=0.05$:​ + + + spower PAR KIT.gdat -a 0.05 -c 0.01 --sample_size 2000 --alpha 0.05 -v2 -o K1AP + ​\\ + To calculate sample size assuming equal case control samples given 80% power and using the same setup as above: + + + spower PAR KIT.gdat -a 0.05 -c 0.01 --power 0.8 --alpha 0.05 -v2 -o K1AS + ​\\ + To view results + + + spower show K1AP.csv power* + spower show K1AS.csv sample_size* + ​\\ + == Adjust effect size == + A variable effect model below will assign site specific PAR to deleterious rare variants depending on the MAF of rare variants: + + + spower PAR KIT.gdat -a 0.05 --PAR_variable --sample_size 2000 --alpha 0.05 -v2 -o K1AP + spower PAR KIT.gdat -a 0.05 --PAR_variable --power 0.8 --alpha 0.05 -v2 -o K1AS + ​\\ + == Set a random proportion of non-causal variants == + The use of ''​-P''​ and ''​-r''​ options to model the effect of non-causal variants was previously introduced in logit model. The same idea applies to PAR model. See section above for details. + + ==== Analytic Power and Sample Size Calculation for Quantitative Traits Analysis ==== + === Linear QT mean shift model === + == Basic example == + To calculate power at given sample size for randomly ascertained QT samples of 2000 unrelated individuals,​ at an effect size of [[http://​bioinformatics.org/​spower/​simtraits#​quantitative_traits|$0.25\sigma$]],​ evaluated at $\alpha=0.05$:​ + + + spower LNR KIT.gdat -a 0.25 --sample_size 2000 --alpha 0.05 -v2 -o K1AP # power 0.22 + ​\\ + To calculate sample size assuming equal case control samples given 80% power and using the same setup as above: + + + spower LNR KIT.gdat -a 0.25 --power 0.8 --alpha 0.05 -v2 -o K1AS # sample size 10806 + ​\\ + == Adjust effect size == + A variable effect model below will assign to rare variants mean shift $\in(0.1, 0.5)$ depending on the MAF of rare variants: + + + spower LNR KIT.gdat -a 0.1 -A 0.5 --sample_size 2000 --alpha 0.05 -v2 -o K1AP # 0.289 + ​\\ + Adding effects for common variants, fixed mean shift to 0.15: + + + spower LNR KIT.gdat -a 0.1 -A 0.5 -c 0.15 --sample_size 2000 --alpha 0.05 -v2 -o K1AP # 0.86 + spower LNR KIT.gdat -a 0.1 -A 0.5 -c 0.15 --power 0.8 --alpha 0.05 -v2 -o K1AS # 1966 + ​\\ + == Adjust variant properties and analysis filters == + Now based on the basic example, we change definition for rare variants to MAF > 5%: + + + spower LNR KIT.gdat -a 0.25 --def_rare 0.05 --sample_size 2000 --alpha 0.05 -v2 -o K1AP # 0.946 + ​\\ + Power of the test boosts significantly,​ although it is not a reasonable setup to apply aggregated rare variant analysis to high frequency variants like in this example. There is usually adequate power to detect common variants association when analyzed individually. + + == Set a random proportion of non-causal variants == + For example we set a random set of 50% variants that would not contribute to the quantitative phenotype, but will be included in analysis as noise and as a result larger sample size is required to achieve the same power. Since each time a random proportion of variants are considered non-causal, the final estimate should be based on average of multiple replicates, for example 100 replicates: + + + spower LNR KIT.gdat -a 0.5 --def_valid_locus 3 1000 --sample_size 20000 --alpha 0.05 -P 0.5 -r 100 -v2 -o K1APP --jobs 8 # power 0.8632 + spower LNR KIT.gdat -a 0.5 --def_valid_locus 3 1000 --power 0.8 --alpha 0.05 -P 0.5 -r 100 -v2 -o K1APS --jobs 8 # sample size 17420.4501268 + spower show K1APP.csv power* + spower show K1APS.csv *size* + ​\\ + Note that standard deviation for the 100 replicates is also calculated and can be displayed with wildcard symbol "​*"​ in ''​spower show''​ command.

### Page Tools 