Concepts
Notations
Notation | Definition | Notes |
---|---|---|
J | Number of response variables | |
N | Sample size | |
Y↦RJ | ||
X | ||
β↦RJ | ||
Σ↦RJ×J | ||
V | ||
Basic association model
Consider a multivariate regression problem Y∣X,β,Σ∼NJ(Xβ,Σ) The goal is to make inference on β. A Bayesian model for β is adopted β∣U∼NJ(0,U)
A Bayesian hierachical model with a spike-slap prior on $\beta$ is adopted
\[\beta \mid \bar{\beta}, U_\phi, \pi_0 \sim \pi_0\delta_0 + (1 - \pi_0)N_J(\bar{\beta}, U_\phi)\]
\[\bar{\beta} \mid U_\omega \sim N_J(0, U_\omega)\]
Therefore, \[\beta \mid U_\phi, U_\omega, \pi_0 \sim \pi_0\delta_o + (1 - \pi_0) N_J(0, U_\phi + U_\omega)\]
Let $U = U_\phi + U_\omega$, then \[\beta \mid U, \pi_0 \sim \pi_0\delta_0 + (1 - \pi_0)N_J(0, U)\]