Concepts

Notations

Notation Definition Notes
J Number of response variables
N Sample size
YRJ
X
βRJ
ΣRJ×J
V

Basic association model

Consider a multivariate regression problem YX,β,ΣNJ(Xβ,Σ) The goal is to make inference on β. A Bayesian model for β is adopted βUNJ(0,U)

A Bayesian hierachical model with a spike-slap prior on $\beta$ is adopted
\[\beta \mid \bar{\beta}, U_\phi, \pi_0 \sim \pi_0\delta_0 + (1 - \pi_0)N_J(\bar{\beta}, U_\phi)\]
\[\bar{\beta} \mid U_\omega \sim N_J(0, U_\omega)\]
Therefore, \[\beta \mid U_\phi, U_\omega, \pi_0 \sim \pi_0\delta_o + (1 - \pi_0) N_J(0, U_\phi + U_\omega)\]
Let $U = U_\phi + U_\omega$, then \[\beta \mid U, \pi_0 \sim \pi_0\delta_0 + (1 - \pi_0)N_J(0, U)\]